PMA Prozeß- und Maschinen-Automation GmbH

TB 45 Temperaturbegrenzer/-wächter

Mehr Effizienz beim Engineering, mehr Übersicht im Betrieb: Die Projektierungsumgebung für die BluePort[®]-Regler, Anzeiger und rail line - Messumformer, Universalregler, Temperaturbegrenzer

Erklärung der Symbole:

(i) Information allgemein Warnung allgemein Achtung: ESD-gefährdete Bauteile **1** Achtung: Bedienungsanleitung lesen m

Bedienungsanleitung lesen

Hinweis

© Copyright 2005 PMA Prozeß- und Maschinen-Automation GmbH Printed in Germany Alle Rechte vorbehalten. Ohne vorhergehende schriftliche Genehmigung ist der Nachdruck oder die auszugsweise fotomechanische oder anderweitige Wiedergabe diese Dokumentes nicht gestattet.

Dies ist eine Publikation von: PMA Prozeß- und Maschinen Automation Postfach 310229 D-34058 Kassel Germany

Inhaltsverzeichnis

1.	Allg 1.1	emeines	5 6						
2.	Sicherheitshinweise 7								
	2.1	Wartung, Instandsetzung, Umrüstung	8						
	2.2	2 Reinigung							
	2.3	Ersatzteile	8						
3.	Mon	taαe	9						
•.	3.1	Anschlussstecker	0						
Δ	Flok	trischer Anschluss 1	1						
т.	4 1	Anschlusshild 1	1						
	4.2	Anschluss der Klemmen	1						
	4.3	Anschlussplan.	3						
	4.4	Anschlussbeispiele	4						
	4.5	Installationshinweise	5						
5.	Bedi	ienung	6						
•.	5.1	Frontansicht	6						
	5.2	Bedienstruktur	7						
	5.3	Verhalten bei Netz Ein	7						
	5.4	Anzeigen der Bedienebene	8						
		5.4.1 Anzeige 1	8						
		5.4.2 Anzeige 2	8						
		5.4.3 Umschaltungen mit der Enter-Taste	8						
	5.5	Erweiterte Bedienebene	9						
	5.6 5.7		9						
	5.7		0						
6.	Funk	xtionen	?1						
	b. l		<u></u>						
		6.1.1 Temperaturbegrenzer	」 2						
		6.1.2 FemperaturWachter	22 22						
	62		.∠))						
	6.3	Findands-Skalierung	23						
	0.0	6.3.1 Eingangsfehler - Erkennung	24						
		6.3.2 Zweileiter - Messung	24						
		6.3.3 Anschluß Thermoelement	24						
	6.4	Filter	25						
	6.5	Grenzwertverarbeitung	26						
		6.5.1 Messwert-Überwachung	26						
		6.5.2 Uberwachung Betriebsstunden, Schaltspielzahl	27						
	6.6	Analogausgang (Option)	28						
		6.6.1 Analogausgang	28						
		b.b.Z Logik - Ausgang (Uption)	<u>'</u> 9						
	67	0.0.3 Iransmitterspeisung (Uption)	19 20						
	0.7	671 Fohlorlisto	20 20						
	68	Rücksetzen auf Hersteller-Werkseinstellung	,0 {1						
	0.0		/ I						

7.	Konf 7.1 7.2	igurier-Ebene Konfigurations-Übersi Konfigurationen	icht	• • • •	•	•	• • • •	•	•	•	•	• • • •	•	•	• • •	•			•	• • •	•	•	•	• • • •	 		•	•	32 32 33
8.	Para 8.1 8.2	meter-Ebene Parameter-Übersicht Parameter	••• •••	• • • •	•	•	• • • •	•	•	•	•	• • • •	•	•	•	•			•	•	•	•	•	• • • •	 		•	•	39 39 40
9.	Kalil 9.1 9.2	brier-Ebene Offset-Korrektur 2-Punkt-Korrektur	••• •••	• • • •	•	•	••••	•	•	•	•	••••	•	•	•	•	• •		•	• • •	•	•	• • •	• • • •	 		•	•	41 42 43
10	.Engi	neering Tool BlueCo	ontro	ol.					•		•		•	•	•	•	•			•		•	•		 				44
11	.Ausf	ührungen	• •	• •	•	•	• •	•	•	•	•	•••	•	•	•	•	• •	• •	•	•	•	•	•	• •		•		•	45
12 13	. I ech . Inde	nische Daten x	· ·	•••	•	•	•••	•	•	•	•	•••	•	•	•	•	•		•	•	•	•	•	• •	 	•	•	•	46 51

Allgemeines

1

Vielen Dank, dass Sie sich für den Temperaturbegrenzer TB 45 entschieden haben.

Die Temperaturbegrenzer TB 45 dient zur Überwachung von Prozessen. Er erfaßt Messsignale, meldet Überschreitungen und schaltet ab. Das Gerät ist für Heizen- und Kühlenprozesse einsetzbar. Das Gerät kann als elektronischer Temperaturbegrenzer, als Temperaturwächter oder als Grenzwertmelder konfiguriert werden.

Ein TB 45 verfügt über einen Universaleingang, einen Grenzkontakt sowie einen Voralarmkontakt. Eine galvanische Trennung besteht zwischen Eingängen und Ausgängen, sowie zur Hilfsenergie und zu den Kommunikationsschnittstellen.

Anwendungen

Der TB 45 kann als

- geprüfter Temperaturbegrenzer / wächter nach DIN 3440 / EN 14597
- oder als Grenzwertmelder für unterschiedliche Prozesssignale

verwendet werden.

Der TB 45 als DIN geprüfter Temperaturbegrenzer / -wächter (Typ2) ist in Anlagen, in denen die Überschreitung bzw. Unterschreitung einer bestimmten Temperatur zu Schäden führt, einsetzbar.

Vorteile auf einen Blick

Kompakte Bauform, nur 22,5 mm Breite

Auf Hutschiene aufschnappbar

Steckbare Schraub- oder Federzugklemmen

Zweizeilige LCD-Anzeige mit zusätzlichen Anzeigeelementen

Prozesswerte immer im Blick

Komfortable 3-Tastenbedienung

Kommunikationsfähigkeit mit kabelloser Querverbindung in Hutschiene

Universal - Eingang - reduziert die Lagerhaltung

Universal - Ausgang als Anzeigewert als kombinierter Strom-/ Spannungsausgang

Schnelle Reaktionszeit, nur 100 ms Zykluszeit

als Temperaturbegrenzer / - wächter oder als allgemeiner Grenzwertmelder einsetzbar

Kundenspezifische Linearisierung

Messwertkorrektur als Offset oder 2-Punkt

Weitere Dokumentationen zum Temperaturbegrenzer TB 45: 9498 737 48433

—	Da	iter	ıblatt	TΒ	45			
		1.5	1.1		TD	4 -		

– Bedienhinweis TB 45 9499 040 93641 - Schnittstellenbeschreibung 9499 040 72018

1.1 Einsatz in wärmetechnischen Anlagen

In wärmetechnischnen Anlagen dürfen häufig nur zugelassene Regel- und Steuergeräte eingesetzt werden. Die Ausführungsvariante des TB 45 (TB45-2xx-xxxx-Dxx) erfüllt die Anforderungen als DIN geprüfter, elektronischer Temperaturbegrenzer bzw. -wächter (TB/TW, Typ 2.B.J.V) gemäß DIN 3440 und prEN 14597. Er kann damit in Wärmeerzeugungsanlagen eingesetzt werden, z.B. in

- Heizungssystemen in Gebäuden nach DIN EN 12828 (früher DIN 4751)
- Großraumwasserkessel nach DIN EN 12953-6 (früher DIN 4752)
- Wärmeübertragungsanlagen mit organischen Wärmeträgern nach DIN 4754
- Ölfeuerungsanlagen nach DIN 4755

...

Mit geeigneten, zugelassenen Fühlern können Temperaturen in Wasser, Öl, und Luft überwacht werden.

2 Sicherheitshinweise

Dieses Gerät ist gemäß VDE 0411-1 / EN 61010-1 gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Das Gerät stimmt mit der Europäischen Richtlinie 89/336/EWG (EMV) überein und wird mit dem CE-Kennzeichen versehen.

Das Gerät wurde vor Auslieferung geprüft und hat die im Prüfplan vorgeschriebenen Prüfungen bestanden. Um diesen Zustand zu erhalten und einen gefahrlosen Betrieb sicherzustellen, muss der Anwender die Hinweise und Warnvermerke, die in dieser Bedienungsanleitung enthalten sind, beachten und das Gerät entsprechend der Bedienungsanleitung betreiben.

Das Gerät ist ausschließlich bestimmt zum Gebrauch als Mess- und Begrenzungsgerät in technischen Anlagen.

Warnung

Weist das Gerät Schäden auf, die vermuten lassen, dass ein gefahrloser Betrieb nicht möglich ist, so darf das Gerät nicht in Betrieb genommen werden.

ELEKTRISCHER ANSCHLUSS

Die elektrischen Leitungen sind nach den jeweiligen Landesvorschriften zu verlegen (in Deutschland VDE 0100). Die Messleitungen sind getrennt von den Signal- und Netzleitungen zu verlegen.

In der Installation ist für das Gerät ein Schalter oder Leistungsschalter vorzusehen und als solcher zu kennzeichnen. Der Schalter oder Leistungsschalter muss in der Nähe des Gerätes angeordnet und dem Benutzer leicht zugänglich sein.

INBETRIEBNAHME

Vor dem Einschalten des Gerätes ist sicherzustellen, dass die folgenden Punkte beachtet worden sind:

- Es ist sicherzustellen, dass die Versorgungsspannung mit der Angabe auf dem Typschild übereinstimmt.
- Alle für den Berührungsschutz erforderlichen Abdeckungen müssen angebracht sein.
- Ist das Gerät mit anderen Geräten und / oder Einrichtungen zusammen geschaltet, so sind vor dem Einschalten die Auswirkungen zu bedenken und entsprechende Vorkehrungen zu treffen.
- Das Gerät darf nur in eingebautem Zustand betrieben werden.
- Die f
 ür den Einsatz des Ger
 ätes angegebenen Temperatureinschr
 änkungen m
 üssen vor und w
 ährend des Betriebes eingehalten werden.

Warnung

Das Gerät ist ein Einbaugerät und erhält seine Berührungssicherheit dadurch, dass es berührungssicher in einem Gehäuse oder Schaltschrank eingebaut wird.

Warnung

Die Lüftungsschlitze des Gehäuses dürfen während des Betriebes nicht abgedeckt sein.

Die Messeingänge sind für die Messungen von Stromkreisen ausgelegt, die nicht direkt mit dem Versorgungsnetz verbunden sind (CAT I). Die Messeingänge sind für transiente Überspannung bis 800V gegen PE ausgelegt.

AUSSERBETRIEBNAHME

Soll das Gerät außer Betrieb gesetzt werden, so ist die Hilfsenergie allpolig abzuschalten. Das Gerät ist gegen unbeabsichtigten Betrieb zu sichern.

Ist das Gerät mit anderen Geräten und / oder Einrichtungen zusammen geschaltet, so sind vor dem Abschalten die Auswirkungen zu bedenken und entsprechende Vorkehrungen zu treffen.

2.1 Wartung, Instandsetzung, Umrüstung

Die Geräte bedürfen keiner besonderen Wartung. Im Innern des Gerätes sind keine bedienbaren Elemente angebracht, so dass der Anwender das Gerät nicht öffnen darf. Umrüstungen, Wartungs- und Instandsetzungsarbeiten dürfen ausschließlich nur von geschulten fach- und

sachkundigen Personen durchgeführt werden. Dem Anwender steht hierfür der PMA-Service zur Verfügung.

Warnung

Beim Öffnen der Geräte oder Entfernen von Abdeckungen und Teilen können berührungsgefährliche, spannungsführende Teile freigelegt werden. Auch können Anschlussstellen spannungsführend sein.

Achtung

Beim Öffnen der Geräte können Bauelemente freigelegt werden, die gegen elektrostatische Entladung (ESD) empfindlich sind.

Den PMA-Service können Sie erreichen unter:

PMA Prozeß- und Maschinen-Automation GmbH Miramstraße 87 D-34123 Kassel

Tel. +49 (0)561 / 505-1257 Fax +49 (0)561 / 505-1357 e-mail: mailbox@pma-online.de

2.2

Das Gehäuse und die Gerätefront können mit einem trockenen, fusselfreien Tuch gereinigt werden.

Ersatzteile

Reinigung

Als Ersatzteile für das Geräte sind folgende Zubehörteile zugelassen:

Beschreibung	Bestell-Nr.	
Anschlusssteckerset Schraubklemme	9407-998-07101	
Anschlusssteckerset Federzugklemme	9407-998-07111	
Hutschienen-Busverbinder	9407-998-07121	

3 Montage

Das Gerät ist für die senkrechte Montage auf 35 mm - Hutschienen nach EN 50022 vorgesehen.

Der Montageort sollte möglichst frei von Erschütterungen, aggressiven Medien (wie Säuren, Laugen), Flüssigkeiten, Staub oder anderen Schwebstoffen sein.

Geräte der *rail line* - Familie können direkt nebenaneinander montiert werden. Für die Montage und Demontage sind über und unter dem Gerät mindestens 8 cm Abstand einzuhalten.

Zur Montage ist das Gerät einfach von oben auf die Hutschiene einzuschwenken und hörbar einzurasten.

Zur Demontage ist der Fußriegel mit einem Schraubendreher nach unten zu ziehen und das Gerät nach oben herauszuschwenken.

Der Temperaturbegrenzer TB 45 enthält keine wartungspflichtigen Teile und braucht kundenseitig nicht geöffnet zu werden.

Das Gerät darf nur in Umgebungen mit der zugelassenen Schutzart verwendet werden.

Die Lüftungsschlitze des Gehäuses dürfen nicht zugedeckt werden.

Achtung! Das Gerät enthält ESD-gefährdete Bauteile.

Bitte beachten Sie die Sicherheitshinweise (siehe Seite 7).

Um den Verschmutzungsgrad 2 nach EN 61010-1 zu erhalten, darf das Gerät nicht unter Schützen oder ähnlichen Geräten montiert werden, aus denen leitende Stäube oder Teile herausrieseln können.

TB 45

3.1 Anschlussstecker

Die vier Geräte-Anschlussstecker sind steckbar ausgeführt. Sie sind von oben bzw. unten in das Gehäuse zu stecken (hörbares Rasten). Das Lösen der Stecker erfolgt durch Aushebeln mit einem Schraubendreher. Es stehen zwei Typen zur Verfügung:

- Schraubklemmen für Leiterquerschnitte bis 2,5 mm²
- Federzugklemmen für Leiterquerschnitte bis 2,5 mm²

Die Stecker sind nur leistungslos zu betätigen.

Schraubklemmen sind mit einem Anzugsmoment von 0,5 - 0,6 Nm anzuziehen.

Bei Federzugklemmen können starre Leiter und flexible Leiter mit Aderendhülse direkt in die Klemmstelle eingeführt werden. Zum Lösen ist der (orange) Hebelöffner zu betätigen.

Berührschutz: Nicht angeschlossene Klemmenblöcke sind im Steckplatz zu belassen.

Bei Verwendung von Litzenleitungen sind generell Aderendhülsen zu verwenden.

Anschluss der Klemmen

I)

4.2

Ein fehlerhafter Anschluss kann zur Zerstörung des Gerätes führen.

1 Anschluss der Hilfsenergie

je nach Bestellung

.

90 ... 250 V AC Klemmen: 15,16 24 V AC / DC Klemmen: 15,16

weitere Informationen siehe Kapitel 12 "Technische Daten"

Geräte mit Option Systemschnittstelle:

Die Versorgung erfolgt über den Busverbinder vom Feldbuskoppler oder Einspeisemodul. Die Klemmen 15, 16 sind nicht zu beschalten.

Anschluss des Eingangs INP1

Eingang für die Messgröße (Messwert).

- Widerstandsthermometer (Pt100/ Pt1000/ KTY/ ...), 3-Leiter-Anschluss Klemmen: 1, 2, 3 a Klemmen: 1, 2, 3 Potenziometer С
- d Strom (0/4...20mA)
- Spannung (-2,5...115/-25...1150/-25...90/ -500...500mV) e
- f Spannung (0/2...10V/ -10...10V / -5...5V)
- Thermoelement (Standardanschluss; Temperaturwächter, Grenzwertmelder) Klemmen: 1, 2 g Thermoelement (Doppelthermoelement; Temperaturbegrenzer) Klemmen: 1, 2, 3

Klemmen: 2, 3

Klemmen: 1, 2

Klemmen: 2, 4

O Anschluss des Eingangs di1	
Digitaler Eingang, konfigurierbar als Schalter oder Taster. a Kontakt - Eingang b Optokoppler - Eingang (Option)	Klemmen: 7, 8 Klemmen: 7, 8
Anschluss der Ausgänge LC / OUT2	
 Relaisausgänge max. 250V/2A als Schließer mit gemeinsamem Kontaktanschluss. LC OUT2 	Klemmen: 17, 18 Klemmen: 17, 14
Anschluss des Ausgangs OUT3 (Option)	
Universal-Ausgang für Messwert-Anzeige	
h Logik (020mA / 010V)	Klemmen: 11, 12
i Strom (020mA)	Klemmen: 11, 12
j Spannung (010V)	Klemmen: 12, 13
k Transmitterspeisung	Klemmen: 11, 12

Anschluss der Busschnittstelle (Option)

RS 485-Schnittstelle mit MODBUS RTU Protokoll. * siehe Schnittstellenbeschreibung MODBUS RTU: (9499-040-72018)

4.3 Anschlussplan

Die durch das Engineering belegten Klemmen des Gerätes können über BlueControl angezeigt und ausgedruckt werden (Menü Datei \ Seitenansicht - Anschlussplan)

Beispiel:

Con	onnection diagram								
term	erminal row 1								
pin	description	Description							
1	INP1 TC+	measurement X1, TC type J (-1001200°C)							
2	INP1 TC-								
3	INP1 TC+								
4									
5									
6									
7	di1 contact	reset error list							
8	di1 contact								

term	terminal row 2								
pin	description	Description							
11	OUT3 +I	0 20 mA continuous, process value							
12	OUT3 -I								
13									
14	OUT2	signal limit 2, signal INP1 fail							
15	PWR L 24V AC/DC								
16	PWR N 24V AC/DC								
17	LC / OUT2								
18	LC	limitcontact							

term	terminal row 3							
pin	description	Description						
BC1	RS485	RGND						
BC2	NC							
BC3	NC							
BC4	RS485	Data A						
BC5	RS485	Data B						

4.4 Anschlussbeispiele

Anschlussbeispiel: KS 45 und TB 45

Beispiel: RS 485-Schnittstelle mit Umsetzer RS 485-RS 232 Siehe Dokumentation 9499-040-72018

4.5 Installationshinweise

- Mess- und Datenleitungen sind getrennt von Steuerleitungen und Leistungskabeln zu verlegen.
- Fühlermessleitungen sollten verdrillt und geschirmt ausgeführt werden. Der Schirm ist zu erden.
- Angeschlossene Schütze, Relais, Motoren usw. müssen mit einer RC-Schutzbeschaltung nach Angabe des Herstellers versehen sein.
- Das Gerät ist nicht in der Nähe von starken elektrischen und magnetischen Feldern zu installieren.
- Die Temperaturfestigkeit der Anschlusskabel sollte den örtlichen Gegebenheiten entsprechend gewählt werden.

Das Gerät ist nicht zur Installation in explosionsgefährdeten Bereichen geeignet.

Ein fehlerhafter Anschluss kann zur Zerstörung des Gerätes führen.

Die Messeingänge sind für die Messungen von Stromkreisen ausgelegt, die nicht direkt mit dem Versorgungsnetz verbunden sind (CAT I). Die Messeingänge sind für transiente Überspannung bis 800V gegen PE ausgelegt.

Bitte beachten Sie die Sicherheitshinweise (siehe Seite 7).

5 Bedienung

5.1

Frontansicht

- 1 Anzeige 1: Istwertanzeige oder Grenzwert LC
- 2 Anzeige 2: Grenzwert LC / Einheiten-Anzeige / erweiterte Bedienebene / Fehlerliste
- 3 Betriebsart "Temperaturbegrenzer"
- ④ Errorliste (2 x ←), z.B.
 - F b F. x Fühlerfehler INP. x
 - ShE.x Kurzschluss INP. x
 - $Pol \cdot \mathbf{x}$ Verpolung INP. x
 - L.m.x Grenzwertalarm
- **5** Inkrement-Taste
- 6 Enter-Taste / ruft erweiterte Bedienebene bzw. Errorliste auf
- LED-Anzeige des Gerätezustands

grün:	Grenzwert LC im Gutzustand
grün blinkend:	kein Datenaustausch mit Buskoppler (nur bei
	Geräten mit Option Systemschnittstelle)
rot:	Grenzwert LC aktiv
rot blinkend:	Gerätefehler

- 8 Anzeige- Elemente; aktiv als Balken
- 9 Zustand des Schaltausgangs LC aktiv
- Zustand des Schaltausgangs OUT2 aktiv
- Dekrement-Taste
- BC-Anschluss für das Engineering Tool **BlueControl**®
- (6) + (5): Durch Drücken der Tastenkombination kann ein Rücksetzen der Errorliste / Entriegelung des LC-Alarms durchgeführt werden (falls konfiguriert).

Die LCD - Anzeigezeile 1 zeigt den Messwert oder Grenzwert an (parametrierbar). In der zweiten LCD-Zeile wird standardmäßig der Grenzwert LC dargestellt. Beim Übergang in die Parameter-, Konfigurier- oder Kalibrier-Ebene sowie in der erweiterten Bedienebene wechselt die Anzeige zyklisch zwischen dem Parameter-Namen und dem Parameter-Wert.

(B) : Zum leichteren Herausziehen des PC-Anschlusssteckers aus dem Gerät drücken Sie das Kabel bitte leicht nach links.

5.2 Bedienstruktur

Die Bedienung des Gerätes wird in vier Ebenen unterteilt:

Der Zugang zu der Parameter-, Konfigurations- und Kalibrier-Ebene ist beim TB 45 verriegelt.

• Der Zugang zu einer Ebene kann durch Vorgabe einer Passzahl (0 ... 9999) entriegelt werden. Nach Eingabe der eingestellten Passzahl stehen alle Werte der Ebene zur Verfügung.

Bei fehlerhafter Vorgabe erfolgt ein Rücksprung auf die Bedien-Ebene. Die Passzahl ist über BlueControl einzustellen.

• Zusätzlich können einzelne Ebenen im Gerät über Einstellungen im Engineering Tool (IPar, ICnf, ICal) ausgeblendet werden .

Sollen einzelne Parameter ohne Passzahl oder aus einer verriegelten Parameter-Ebene zugänglich sein, müssen sie in die erweiterte Bedien-Ebene kopiert werden.

Eine Veränderung von Werten in der erweiterten Bedienebene ist bei eingestellter Temperaturbegrenzeroder -wächterfunktion nicht möglich.

Auslieferzustand:

alle Ebenen uneingeschränkt zugänglich, Passzahl PRS5 = 45

5.3 Verhalten bei Netz Ein

Nach Einschalten der Hilfsenergie startet das Gerät mit der Bedien-Ebene. Es wird der Betriebszustand angenommen, der vor Netzunterbrechung aktiv war.

5.4 Anzeigen der Bedienebene

5.4.1 Anzeige 1

Der in Anzeige 1 dargestellte Wert kann über die Konfiguration Dis1 bestimmt werden. Diese Konfiguration kann nur über BlueControl[®] eingestellt werden. Es stehen zur Verfügung:

- Darstellung des Anzeigewertes (Default)
- Darstellung des Grenzwertes LC

Der Anzeigewert, der auch als Istwert bezeichnet wird, ist der derjenige Wert, der sich nach Ausführung der Funktion 1 ergibt. Im Normalfall ist dies der Eingangswert 1.

5.4.2 Anzeige 2

Der in der zweiten LCD-Zeile dauerhaft darzustellende Wert kann über das Engineering Tool **BlueControl** verändert werden.

Standardmäßig ist der Grenzwert LC eingestellt.

Durch Löschen des Eintrags für Anzeige 2 kann wieder auf die Grenzwert-Anzeige zurückgestellt werden.

Sind Eingangswerte fehlerhaft, so zeigen die von den Eingängen abhängige Signale (z.B. Inp1, Anzeigewert, Out3) ebenfalls FAIL an.

5.4.3 Umschaltungen mit der Enter-Taste

Durch Betätigen der Enter-Taste können verschiedene Werte in der Anzeige 2 aufgerufen werden.

- Darstellung des definierten Anzeige 2 Wertes (über BlueControl[®]); Grundeinstellung ist der Grenzwert LC
- 2 Aufruf der Fehlerliste, falls Einträge vorhanden sind. Sind mehrere Einträge vorhanden, so wird mit jeder Enter-Taste der folgende Wert angezeigt.
- Aufruf der erweiterten Bedienebene, falls Einträge vorhanden sind. Sind mehrere Einträge vorhanden, so wird mit jeder Enter-Taste der folgende Wert angezeigt.
- Rückkehr zur Ausgangsanzeige
 Wird für 30 s keine Taste betätigt, so springt die
 Anzeige automatisch zur Ausgangsanzeige zurück.

5.5 Erweiterte Bedienebene

Wichtige oder häufig benutzte Parameter und Signale können in die erweiterte Bedienebene gelegt werden.

Dadurch wird der Zugriff vereinfacht, z.B. kein Durchwählen durch Menübäume, oder nur ausgewählte Werte sind bedienbar, die anderen Daten der Parameter-Ebene sind z.B. verriegelt.

Die max. 8 verfügbaren Werte der erweiterten Bedienebene werden in der zweiten LCD-Zeile zur Anzeige gebracht.

Der Inhalt der erweiterten Bedienebene wird mit Hilfe des Engineering Tools **BlueControl** festgelegt. Dazu wählen Sie im "Modus"-Auswahlmenü den Eintrag "Bedienebene" aus. Weitere Informationen finden Sie in der Online-Hilfe des Engineering Tools.

Eine Veränderung von Werten in der erweiterten Bedienebene ist bei eingestellter Temperaturbegrenzeroder -wächterfunktion nicht möglich.

Durch Betätigen der ← - Taste wird auf den ersten Wert der erweiterten Bedienebene geschaltet (evtl. vorher Errorliste).

Die angewählten Parameter können durch die Tasten ▼ und ▲ verändert werden.

Taste 🖵 schaltet zum nächsten Parameter weiter

Taste ← schaltet beim letzten Parameter zurück in die normale Anzeige.

Wird innerhalb einer bestimmten Zeit keine Taste betätigt (Timeout = 30 s), so springt die Anzeige auf die Bedienebene zurück.

Ein Verändern von Werten in der erweiterten Bedienebene ist über **BlueControl** mit der Einstellung : Konfiguration / Sonstiges / lexo = 1 verriegelbar.

5.6

Entriegelungsfunktion

Zum Rücksetzen der Errorliste bzw. Entriegelung der Begrenzungsfunktion sind folgende Einstellungen verfügbar:

- Rücksetzen über den digitalen Eingang di1
- Rücksetzen über die Tastenkombination Enter + Inkrement Taste

Im letzteren Fall ist zuerst die Enter-Taste gedrückt zu halten und dann die Inkrement-Taste zu betätigen.

Anstehende Alarme oder Fehlermeldungen können nicht entriegelt bzw. zurückgesetzt werden.

Bitte beachten Sie, dass bei Ausführung der Reset-Funktion der oder die Ausgänge, z.B. LC, wieder entriegelt wird. Bitte prüfen Sie die Auswirkungen auf den angeschlossenen Prozess.

Die Reset-Tastenkombination kann über eine Passzahl verriegelt werden. (Einstellung in BlueControl[®]: Konfiguration / Sonstiges / IRES = 1).

5.7 Auswahl der Einheiten

Die anzuzeigende Einheit wird über die Konfiguration ILUnt bestimmt.

Wird der Wert "1 = Temperatur-Einheit" gewählt, so ergibt sich die darzustellende Einheit aus der Konfiguration $U_{CD} + E_{c}$ mit den zugehörigen Umrechnungen für Fahrenheit und Kelvin.

Ebenso ist es möglich, über die Auswahl \mathbb{I} . Un $\mathbb{E} = \mathbb{Z} \mathbb{Z}$ eine beliebige, max. 5-stellige Einheit oder einen Text vorzugeben.

Für eine dauerhafte Darstellung ist im Engineering Tool im Modus "Bedienebene" der Wert Signale/Sonstiges/D.Unt in die Anzeige 2 zu setzen.

6 Funktionen

Den Signaldatenfluss des Temperaturbegrenzers TB 45 zeigt das nachfolgende Bild:

6.1 Begrenzungsfunktionen

Der TB 45 kann für verschiedene Funktionen konfiguriert werden:

- als Temperaturbegrenzer
- als Temperaturwächter
- als Grenzwertmelder

6.1.1 Temperaturbegrenzer

Eine eingestellte Temperaturbegrenzerfunktion überwacht den Istwert. Bei Überschreitung bzw. Unterschreitung (konfigurierbar) des eingestellten Grenzwertes LC wird das Ausgangsrelais LC geöffnet und verriegelt.

Eine Entriegelung ist nur möglich, wenn

- der Istwert bei Einstellung "TB Überschreitung" wieder unter den eingestellten Grenzwert LC (minus einer evtl. eingestellten Hysterese) abgefallen ist bzw. bei "TB Unterschreitung" des Grenzwertes LC (plus einer eingestellten Hysteresis) überschritten hat.
- und ein Reset-Vorgang über den digitalen Eingang di1 oder über die Reset Tastenkombination (auswählbar) ausgeführt wurde. Die Reset-Tastenkombiantion kann über eine Passzahl verriegelt werden. (Einstellung in BlueControl[®]: Konfiguration / Sonstiges / IRES = 1).

Wenn das Anzeigeelement TB leuchtet, ist eine Temperaturbegrenzer-Funktion eingestellt.

Bitte beachten Sie, dass eine eingestellte Filterzeit $E \mathcal{F}^+$ die Ansprechzeit für den Messwert erhöhen kann. Die DIN geprüften Ansprechzeiten wurden mit t.F1 = 0,5 s geprüft.

Die Grenzwerte Lim.2, Lim.3 können als Voralarme verwendet werden und auf OUT.2, OUT.3 (optional) ausgegeben werden.

6.1.2 Temperaturwächter

Eine eingestellte Temperaturwächterfunktion überwacht den Istwert. Bei Überschreitung bzw. Unterschreitung (konfigurierbar) des eingestellten Grenzwertes LC wird das Ausgangsrelais LC geöffnet und verriegelt.

Eine Entriegelung erfolgt automatisch, wenn

 der Istwert bei Einstellung "TW Überschreitung" wieder unter den eingestellten Grenzwert LC (minus einer evtl. eingestellten Hysterese) abgefallen ist bzw. bei "TW Unterschreitung" des Grenzwertes LC (plus einer eingestellten Hysteresis) überschritten hat.

 \triangle

Bitte beachten Sie, dass eine eingestellte Filterzeit LF / die Ansprechzeit für den Messwert erhöhen kann. Die DIN geprüften Ansprechzeiten wurden mit t.F1 = 0,5 s geprüft.

Die Grenzwerte Lim.2, Lim.3 können als Voralarme verwendet und auf Out.2, Out.3 (optional) ausgegeben werden.

6.1.3 Grenzwertmelder

Eine eingestellte Grenzwertmeldefunktion überwacht den Istwert. Bei Überschreitung oder Unterschreitung der eingestellten Grenzen L.1 / H.1 wird das Ausgangsrelais LC geöffnet. (s. auch Kap. Grenzwerte)

Die Grenzwerte Lim.2, Lim.3 können als Voralarme verwendet und auf Out.2, Out.3 (optional) ausgegeben werden.

6.2 Linearisierung

Die Eingangswerte der Eingänge INP1 können über eine Tabelle linearisiert werden (abhängig von dem eingestellten Sensortyp 5.4. Y P.

Damit können z.B. Sonderlinearisierungen für Thermoelemente oder andere nichtlineare Verläufe, z.B. die Füllkurve eines Behälters nachgebildet werden.

Auf die Tabelle " $L + \sigma$ " wird immer zugegriffen, wenn in INP1 bei Sensortyp 5.7 Y P = 18: "Sonderthermoelement" oder bei Linearisierung 5.L + σ = 1: "Sonderlinearisierung" eingestellt ist.

- Die Eingangssignale werden je nach Eingangsart in mV, V, mA, % oder Ohm eingetragen.
- Für Sonderthermoelemente (S.tYP = 18) werden die Eingangswerte in V, die Ausgangswerte in der in U.LinT eingestellten Temperatureinheit vorgegeben.
- Für Spezialwiderstandsthermometer (KTY 11-6) (S.tYP = 23) werden die Eingangswerte in Ohm, die Ausgangswerte in der in U.LinT eingestellten Temperatureinheit vorgegeben.

Mit bis zu 16 Stützpunkten können nichtlineare Signale nachgebildet oder linearisiert werden. Jeder Stützpunkt besteht aus einem Eingang (1 n. 1 n. 16) und einem Ausgang (2 n. 1 n. 2 n. 16). Diese Stützpunkte werden automatisch durch Geraden miteinander verbunden. Die Gerade zwischen den ersten beiden Stützpunkten wird nach unten verlängert und die Gerade zwischen den beiden größten wird nach oben verlängert. Somit ist für jeden Eingangswert auch ein definierter Ausgangswert vorhanden.

Wird ein Lmx Wert auf OFF geschaltet, werden alle weiteren Segmente abgeschaltet.

Bedingung für die Eingangswerte ist eine aufsteigende Reihenfolge. 1n.1 < 1n.2 < ... < 1n.15.

Bei der Linearisierung für Sonderthermoelemente sollte der Umgebungstemperaturbereich genau definiert sein, da die interne Temperaturkompensation daraus abgeleitet wird.

Siehe auch S. 38.

6.3

i

Eingang 1 verwenden dieselbe Linearisierungstabelle.

Eingangs-Skalierung

Eingangswerte können skaliert werden. Die Offset- oder Zweipunkt-Messwertkorrektur beeinflusst den Messwert nach einer eventuell durchgeführten Linearisierung.

Werden Strom- oder Spannungssignale als Eingangsgrößen für erwendet, sollte in der Parameter-Ebene eine Skalierung der Eingangs- und Anzeigewerte erfolgen. Die Angabe des Eingangswertes des unteren und oberen Skalierpunktes erfolgt in der jeweiligen physikalischen Größe.

Beispiel für mA/V

Die Parameter InL, OuL, InH und OuH sind nur sichtbar, wenn ConF / InP /Corr = 3 gewählt wurde.

Die Parameter InL und InH bestimmen den Eingangsbereich.

Beispiel bei mA:

Inc. = 4 und Inc. = 20 bedeutet, dass von 4 bis 20 mA gemessen werden soll. (Life-zero Einstellung)

Soll bei dem Einsatz von Thermoelementen und Widerstandsthermometern (Pt100) die vorgegebene Skalierung benutzt werden, müssen die Einstellungen von Lott und Dott sowie von Lott und Dott übereinstimmen.

Zum Rücksetzen einer Eingangsskalierung müssen die Einstellungen von ${\rm InL}$ und Gult sowie von ${\rm InH}$ und Gult übereinstimmen.

6.3.1 Eingangsfehler - Erkennung

Für die Life-zero - Erkennung von angeschlossenen Gebern kann der Ansprechwert für die FAIL-Erkennung variabel nach der Formel eingestellt werden:

Fail-Ansprechwert Int - 0,125 * (Int - Int)

- Beispiel 1: I n L = 4 mA, I n H = 20 mAFail-Ansprechwert $\leq 2 \text{ mA}$
- Beispiel 2: I n L = 2 V, I n H = 6 VFail-Ansprechwert $\leq 1,5 V$

6.3.2 Zweileiter - Messung

Üblicherweise werden Widerstands- und Widerstandsthermometer-Messungen in Dreileitertechnik ausgeführt. Dabei wird davon ausgegangen, dass der Leitungswiderstand in allen Zuleitungen gleich groß ist. Bei einer Zweileitermessung geht der Leitungswiderstand direkt in das Messergebnis ein und verfälscht diese. Mit Hilfe der Messwertkorrektur können jedoch die Leitungswiderstände herausgerechnet werden.

Neben den beiden Anschlüssen mit dem Widerstands/-thermometer ist auch der dritte Anschluss über eine Brücke anzuschließen.

Vorgehen bei Pt100, Pt1000

Anstelle des Sensors wird ein Pt100-Simulator oder eine Dekade an der Messstelle angeschlossen, so dass der Leitungswiderstand mitgemessen wird, und mit einer 2-Punkt-Korrektur die Werte abgeglichen.

Bei einer Messwertkorrektur wird der Temperaturwert verschoben, nicht der Widerstandeingangswert, so dass sich der Linearisierungsfehler erhöhen kann.

Vorgehen bei Widerstandsmessung

Der Leitungswiderstand ist mit einem Ohmmeter zu messen und über die Skalierung vom Messwert abzuziehen.

6.3.3 Anschluß Thermoelement

Wird das Gerät als Temperaturbegrenzer eingesetzt, so muss ein Doppelthermoelement angeschlossen werden. Bei Messungen im Bereich der Raumtemperatur (0 mV) wird die Plausibilität durch die Kontrolle des 2. Thermoelementes sichergestellt.. Außerhalb dieses Bereiches erfolgt keine Kontrolle des 2. Thermoelementes.

Wird das Gerät als Temperaturbewächter oder Grenzwertmelder betrieben, ist kein Doppelthermoelement anzuschließen. Es findet keine Plausibilitätskontrolle statt. (Siehe Anschlußbild Kapitel 4.1 Anschlussbild)

Filter

Die Eingangswerte können mit einem mathematisches Filter erster Ordnung geglättet werden. Die Zeitkonstante ist einstellbar. Dieser Tiefpassfilter dient zur Unterdrückung von anlagebedingten Störungen auf den Eingangsleitungen. Je höher der Wert, desto besser die Filterwirkung, aber desto länger werden die Eingangssignale dadurch verzögert.

6.4

Bitte beachten Sie, dass eine eingestellte Filterzeit $E \mathcal{F}^+$ die Ansprechzeit für den Messwert erhöhen kann. Die DIN geprüften Ansprechzeiten wurden mit t.F1 = 0,5 s geprüft.

6.5 Grenzwertverarbeitung

Der Hauptalarm wirkt auf den Istwert und ist fest dem Relaisausgang LC zugeordnet, dessen Wirkungsrichtung dauerhaft auf invers eingestellt ist. Der Grenzwert wird bei Temperaturbegrenzer-/ -wächterfunktion über den Parameter LC eingestellt, bei der Grenzwertmeldefunktion über L. L/H. L. Die Schaltdifferenz HY 5. L des Grenzwertes ist einstellbar.

Maximal zwei weitere Grenzwerte können als Voralarme konfiguriert werden und den einzelnen Ausgängen Dut.2. Dut.3 zugeordnet werden.

Werden mehrere Signale einem Ausgang zugeordnet, so werden diese logisch ODER verknüpft.

6.5.1 Messwert-Überwachung

messwert-oberwachung

Das zu überwachende Signal kann für jeden Alarm getrennt per Konfiguration ausgewählt werden. Es stehen die folgenden Signale zur Verfügung:

Hauptalarm LC

• Istwert (Anzeigewert)

Voralarme Lim.2 / Lim.3

- Istwert (Anzeigewert)
- Messwert INP1

Jeder der 2 Voralarme L, m.2 ... L, m.3 hat 2 Schaltpunkte H.x. (Max) und L.x. (Min), die individuell abgeschaltet werden können (Parameter = "DFF"). Die Schaltdifferenz H Y 5.x jedes Grenzwertes ist einstellbar. Für die Überwachung des Messwertes gilt:

H.1=0FF

 Arbeitsstrom:
 (ConF / Out.x / O.Rct = 0)
 (Darstellung der Beispiele)

 Ruhestrom:
 (ConF / Out.x / O.Rct = 1)
 (Wirkungsrichtung des Ausgangsrelais ist invertiert)

6.5.2 Überwachung Betriebsstunden, Schaltspielzahl

Betriebsstunden

Die Zahl der Betriebsstunden kann überwacht werden. Bei Erreichen bzw. Überschreiten des eingestellten Wertes wird das Signal InF.1 aktiviert (Errorliste und über einen Ausgang, falls konfiguriert).

Der Überwachungszeitraum beginnt mit dem Setzen des Grenzwertes C.Std. Durch Rücksetzen des Signals InF.1 in der Errorliste beginnt ein neuer Überwachungszeitraum. Die Überwachung kann durch Abschalten des Grenzwertes C.Std beendet werden.

Das Einstellen des Grenzwertes für Betriebsstunden C.Std kann nur über BlueControl[®] erfolgen. Der aktuelle Zählerstand kann in der BlueControl[®] Expert-Version angezeigt werden.

Eine Abspeicherung der Betriebsstunden erfolgt einmal pro Stunde. Zwischenwerte gehen beim Ausschalten verloren.

Schaltspielzahl

Die Schaltspielzahl der Ausgänge kann überwacht werden. Bei Erreichen bzw. Überschreiten des eingestellten Grenzwertes wird das Signal InF.2 aktiviert (Errorliste und über einen Ausgang, falls konfiguriert).

Der Überwachungszeitraum beginnt mit dem Setzen des Grenzwertes C.Sch. Durch Rücksetzen des Signals InF.2 in der Errorliste beginnt ein neuer Überwachungszeitraum. Die Überwachung kann durch Abschalten des Grenzwertes C.Sch beendet werden.

👔 Jeder Ausgang besitzt einen zugeordneten Schaltspielzähler. Der Grenzwert C.Sch wirkt auf alle Schaltspielzähler.

Eine Abspeicherung der Schaltspielzahlen erfolgt einmal pro Stunde. Zwischenwerte gehen beim Ausschalten verloren.

6.6 Analogausgang (Option)

6.6.1 Analogausgang

Ein analoger Ausgang steht als Anzeigeausgang zur Verfügung.

Es stehen beide Ausgangssignale (Strom und Spannung) gleichzeitig zur Verfügung. Mit der Einstellung ConF / Du L.3 / DL YP wird die Ausgangsart gewählt, die exakt justiert sein soll.

Die Einstellung \Box .5 $r \in$ definiert die Signalquelle des auszugebenden Wertes. Beispiel:

Der Ausgangsbereich wird über die Parameter Du L.D und Du L. I skaliert. Die Werte werden in physikalischen Einheiten vorgegeben.

ԱսԷ.Ս	=	-19999999	Skallerung ដែល៥.៩
			für 0/4mA bzw. 0/2V
Out. I	=	-19999999	Skalierung Out.3
			für 20mA bzw. 10V

Beispiel: Ausgabe des vollen Eingangsbereichs des Thermoelementtyps J (-100 ... 1200 °C)

Beispiel: Ausgabe eines begrenzten Eingangsbereichs, z.B. 60.5 ... 63.7 °C) DuL.D = 60.5 DuL. 1 = 63.7

Bitte beachten Sie, je geringer die Spanne ist, desto stärker machen sich Schwankungen am Eingang und die Auflösungsstufung bemerkbar.

i

Das parallele Verwenden des Strom- und Spannungsausgangs ist nur in galvanisch getrennten Kreisen zulässig.

Die Konfiguration 0.tYP = 2 (4 ... 20mA) bzw. 4 (2...10V) bedeutet nur die Zuweisung des Bezugwertes (4 mA bzw. 2V) bei der Skalierung des Ausgangskonfiguration Out.0. Daher werden Ausgangswerte nicht an dem Bezugwert 4mA / 2V begrenzt, sondern es können auch kleinere Werte ausgegeben werden.

Die Auswahl der Konfiguration O.tYP = 0/1 (0/4...20mA) bzw. 2/3 (0/2...10V) legt fest, welcher Ausgang als kalibrierter Bezugsausgang verwendet werden soll.

6.6.2 Logik - Ausgang (Option)

Der analoge Ausgang OUT3 kann auch als Logik-Ausgang verwendet werden (\Box L $\Upsilon P = 0$). Auf diesen Ausgang können z.B. Voralarme ausgegeben werden.

6.6.3 Transmitterspeisung (Option)

Über die Einstellung \Box \pounds Υ P = 5 kann über den Ausgang OUT3 ein Zweileiter-Messumformer gespeist werden. Der Analogausgang des Gerätes steht dann nicht mehr zur Verfügung. Anschlussbeispiel:

Wartungsmanager / Fehlerliste

Falls ein oder mehrere Fehler vorhanden sind, werden diese in eine Fehlerliste eingetragen.

Ein aktueller Eintrag in der Fehlerliste (Alarm oder Fehler) wird durch die E - Anzeige im Display angezeigt.

Zur Anzeige der Fehlerliste muss die Taste 🛏 einmal betätigt werden.

E- Anzeige - Element	Bedeutung	weiteres Vorgehen			
h Parta	Alarm steht an,	- die Fehlernummer in der Fehlerliste gibt die Fehlerart an.			
DIINKT	Fehler vorhanden	- Fehler beseitigen			
	Fehler beseitigt,	- in der Fehlerliste Alarm durch Drücken der 🚺 - oder 💟 - Taste quittieren			
an	Alarm nicht quittiert	- der Alarmeintrag ist damit gelöscht			
aus	kein Fehler, alle Alarmeinträge gelöscht				

6.7.1 Fehlerliste

Name	Beschreibung	Ursache	Mögliche Abhilfe
E. 1	Interner Fehler, nicht	z.B defektes EEPROM	PMA Service kontaktieren
	behebbar		Gerät einschicken
5.3	Interner Fehler, rücksetzbar	z.B. EMV-Störung	Mess- u. Netzleitungen getrennt führen
			Schütze entstören
E.3	Konfigurationsfehler, rücksetzbar	fehlende oder fehlerhafte Konfiguration	Abhängigkeiten bei Konfigura- tionen und Parametern prüfen
E.H	Hardwarefehler	Codenummer und Hardware nicht	PMA Service kontaktieren
		identisch	Elektronik-/Optionskarte austauschen
F6F.1	Fühlerbruch INP1	Fühler defekt	INP1 Fühler austauschen
		Verdrahtungsfehler	INP1 Anschluss überprüfen
Sht. I	Kurzschluss INP1	Fühler defekt	INP1 Fühler austauschen
		Verdrahtungsfehler	INP1 Anschluss überprüfen
POL. (Verpolung INP1	Verdrahtungfehler	Verdrahtung INP1 vertauschen
Lim. 1	gespeicherter Grenzwertalarm 1	eingestellter Grenzwert 1 verletzt	Prozess überprüfen
L : m.2	gespeicherter Grenzwertalarm 2	eingestellter Grenzwert 2 verletzt	Prozess überprüfen
L i m.3	gespeicherter Grenzwertalarm 3	eingestellter Grenzwert 3 verletzt	Prozess überprüfen
InF.1	Zeitgrenzwert-Meldung	eingestellte Betriebsstunden erreicht	Anwendungsspezifisch
Linf.2	Schaltspielzahl- Meldung	eingestellte Schaltspielzahl erreicht	Anwendungsspezifisch
	(digitale Ausgänge)		

Error-Status		Bedeutung
2	anstehender Fehler	nach Fehlerbeseitigung Wechsel zu Error-Status
1	gespeicherter Fehler	nach Quittierung in Errorliste Wechsel zu Error-Status 🛙
0	kein Fehler/Meldung	nicht sichtbar, außer bei Quittierung

 (\mathbf{i})

Gespeicherte Alarme Lim2/3 (E- Element vorhanden) können über den digitalen Eingang di1 oder die Reset-Tastenfunktion quittiert und damit zurückgesetzt werden. Die Reset-Tastenfunktion kann über eine Passzahl verrriegelt werden.

Konfiguration, siehe Seite : ConF /LOG / /Err.r

Steht ein Alarm noch an, d.h. ist die Fehlerursache noch nicht beseitigt (E- Anzeige blinkt), können gespeicherte Alarme nicht quittiert und zurückgesetzt werden.

6.8 Rücksetzen auf Hersteller-Werkseinstellung

Für den Fall, dass es zu einer Fehlkonfigurierung gekommen ist, kann das Gerät auf seine Hersteller-Werkseinstellung zurückgesetzt werden.

- Zur Einleitung muss der Bediener während des Netzeinschaltens die Inkrement- und Dekrement- Taste gleichzeitig gedrückt halten.
- ② Zur Bestätigung der Ausführung muss über die Inkrement -Taste die Auswahl Y E 5 angewählt werden.
- ③ Mit Enter wird das Passzahl Menü aufgerufen und der Bediener muss die gültige Passzahl vorgeben. Bei fehlerhafter Passzahl wird keine Rücksetzung durchgeführt.
- (4) Mit Enter wird der Factory-Reset bestätigt und der Kopiervorgang ausgelöst (Anzeige C 0 P Y).
- (5) Danach startet das Gerät erneut.

In allen anderen Fällen wird keine Rücksetzung durchgeführt (Abbruch über Timeout).

Ist eine der Bedienebenen blockiert worden (über BlueControl $^{(\!(B)\!)}$), so ist kein Rücksetzen auf die Werkseinstellung möglich.

Der Kopiervorgang $\Box \, \Box \, P \, Y \,$ kann mehrere Sekunden dauern.

Danach geht das Gerät in den normalen Betrieb über.

7

Konfigurier-Ebene

7.1 Konfigurations-Übersicht

Abhängig von der Geräteausführung und weiteren eingestellten Konfigurationen können Konfigurationsdaten ausgeblendet sein.

Das nachfolgende Bild zeigt die über die Front des Gerätes bedienbaren Daten.

Einstellung:

- Die Konfigurationen können mit den 🔊 Tasten eingestellt werden.
- Der Übergang zum nächsten Konfigurationselement erfolgt durch Drücken der ←- Taste.
- Nach der letzten Konfiguration einer Gruppe erscheint donE in der Anzeige und es erfolgt ein automatischer Übergang zur nächsten Gruppe.

 (\mathbf{i})

Der Rücksprung an den Anfang einer Gruppe erfolgt durch Drücken der ←- Taste für 3 sec.

7.2 Konfigurationen

Abhängig von der Geräteversion und den eingestellten Konfigurationen werden nicht benötigte Werte ausgeblendet.

Die mit diesem Symbol gekennzeichneten Einträge sind nur bei vorhandener Geräte-Option auswählbar.

Name	Wertebereich	Beschreibung	
<u>SLYP</u>		Sensortyp	
	0	Thermoelement Typ L (-100900°C), Fe-CuNi DIN	
	1	Thermoelement Typ J (-1001200°C), Fe-CuNi	
	2	Thermoelement Typ K (-1001350°C), NiCr-Ni	
	3	Thermoelement Typ N (-1001300°C), Nicrosil-Nisil	
	4	Thermoelement Typ S (01760°C), PtRh-Pt10%	
	5	Thermoelement Typ R (01760°C), PtRh-Pt13%	
	6	Thermoelement Typ T (-200400°C), Cu-CuNi	
	7	Thermoelement Typ C (02315°C), W5%Re-W26%Re	
	8	Thermoelement Typ D (02315°C), W3%Re-W25%Re	
	9	Thermoelement Typ E (-1001000°C), NiCr-CuNi	
	10	Thermoelement Typ B (0/1001820°C), PtRh-Pt6%	
	18	Thermoelement Sonder (Linearisierung erforderlich)	
	20	Pt100 (-200.0 100,0 °C) {bis 150 °C bei reduziertem Leitungswiderstand}	
	21	Pt100 (-200.0 850,0 °C)	
	22	Pt1000 (-200.0850.0 °C)	
	23	Spezial 04500 Ohm (voreingestellt als KTY11-6)	
	24	Spezial 0450 Ohm	
	25	Spezial 01600 Ohm	
	26	Spezial 0160 Ohm	
	30	020mA / 420 mA	
	40	010V / 210 V (nur Inp.1)	
	41	Spezial (-2,5115 mV)	
	42	Spezial (-251150 mV)	
	43	Spezial (-2590 mV)	
	44	Spezial (-500500 mV)	
	45	Spezial (-55 V) (nur Inp.1)	
	46	Spezial (-1010 V) (nur Inp.1)	
	47	Spezial (-200200 mV)	
	50	Potenziometer 0160 Ohm	
	51	Potenziometer 0450 Ohm	
	52	Potenziometer 01600 Ohm	
	53	Potenziometer 04500 Ohm	
S.L. n		Linearisierung nur einstellbar bei 5.Ł Y P :18, 23 47	
	0	Keine	
	1	Sonderlinearisierung. Erstellen der Linearisierungstabelle mit BlueControl (Engineering-Tool) möglich. Voreingestellt ist die Kennlinie für KTY 11-6 Temperatursensoren.	

Eingänge InP.1

Name	Wertebereich	Beschreibung	
Eorr		Messwertkorrektur / Skalierung: Werden Strom-, Spannungs- oder (geräteabhängig) Widerstandssignale als Eingangsgrößen verwendet, kann in der Parameter-Ebene eine Skalierung erfolgen. Die Angabe des Eingangswertes des unteren und oberen Skalierpunktes erfolgt in der jeweiligen elektrischen Größe (mA / V/ Ohm).	
	0	Keine Korrektur	
	1	Die <u>Offset-Korrektur</u> (in CAL-Ebene) kann online am Prozess erfolgen. Zeigt InL den unteren Eingangswert des Skalierungspunktes, dann ist OuL auf den dazu gehörigen Anzeigewert einzustellen. Die Einstellung erfolgt über die Frontbedienung am Gerät.	
	2	Die <u>2-Punkt-Korrektur</u> (in CAL-Ebene) ist mit einem Istwertgeber offline durchführbar. Für den unteren und den oberen Skalierungspunkt jeweils den Istwert vorgeben und als Eingangswert InL bzw. InH bestätigen, dann den jeweils dazu gehörigen Anzeigewert OuL bzw. OuH einstellen. Die Einstellung erfolgt über die Frontbedienung am Gerät.	
	3	Skalierung (in PArA-Ebene) für Strom- und Spannungssignale als Eingangsgrößen (geräteabhängig auch Widerstandssignale). Die Eingangs-und Anzeigewerte für den unteren (InL, OuL) und den oberen Skalierungspunkt (InH, OuH) sind in der Parameterebene sichtbar. Die Einstellung erfolgt über die Frontbedienung am Gerät oder über das Engineering Tool.	

Grenzwerte LC, Lim2, Lim3

Name	Wertebereich	Beschreibung	
Fnc. I		Funktion des Hauptalarms LC	
	0	abgeschaltet	
	1	Messwertüberwachung. Wird der Grenzwert über-/unterschritten, erfolgt eine	
		Alarmmeldung. Diese wird automatisch zurückgesetzt, wenn der Messwert	
		wieder im "Gut"-Bereich (einschließlich Hysterese) ist.	
	2	Messwertüberwachung + Speicherung des Alarmzustands. Ein gespeicherter	
		Grenzwert kann über die RESET-Taste oder den digitalen Eingang zurückgesetzt	
		werden (LUBI/Errir).	
	5	lemperaturwächterfunktion für Überschreitung. Im Gegensatz zur	
		I emperaturbegrenzertunktion ertolgt keine Speicherung.	
	6	<u>Iemperaturwachterfunktion</u> für Unterschreitung. Im Gegensatz zur	
		Temperaturbegrenzerfunktion erroigt keine Speicherung.	
	/	<u>Temperaturbegrenzer</u> für Oberschreitung. Messwertuberwachung +	
		kann über einen digitalen Eingang oder RESET-Taste zurückgesetzt werden (->	
		I OGI/Err r).	
	8	Temperaturbegrenzer für Unterschreitung: Messwertüberwachung +	
		Speicherung des Alarmzustands unterer Grenzwert. Ein gespeicherter	
		Grenzwert kann über einen digitalen Eingang oder RESET-Taste zurückgesetzt	
		werden (-> LOGI/Err.r).	
Fnc.2		Funktion des Voralarms 2 / 3	
$(E \circ c \cdot 3)$	0	abgeschaltet	
(' ' ' ' ' ')	1	Messwertüberwachung. Wird der Grenzwert über-/unterschritten, erfolgt eine	
		Alarmmeldung. Diese wird automatisch zurückgesetzt, wenn der Messwert	
		wieder im "Gut"-Bereich (einschließlich Hysterese) ist.	
	2	Messwertüberwachung + Speicherung des Alarmzustands. Ein gespeicherter	
		Grenzwert kann über die RESET-Taste oder den digitalen Eingang zurückgesetzt	
<u> </u>			
D/ C.C	0	Lucie fur voralarme 2/3	-
(Sr c.3)	1	Istwert Cronzwort IC - Polotivolorm	
	<u>ا</u>		
C Std	خ ٥ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	Vietssweit IIVF I	-
0.510	9999999	Kontrolle Berliebsstunden (nur mit BlueControl sichtbar!)	

Name	Wertehereich	Beschreihung	
C Sch	OFF· 1	Kontrolle Schaltspielzahl (nur mit BlueControl sichtharl)	
0.0011	9999999		
Ausgang O	ut.2, Out.3 🗘		
Name	Wertebereich	Beschreibung	
OLL Y P		Signaltyp OUT (nur für OUT3 - analog) 📀	
	0	Relais/Logik	
	1	020 mA stetig	
	2	4 20 mA stetig	
	3	010 V stetig	
	4	210 V stetig	
	5	Transmitterspeisung	
U.Hct		Wirkungsrichtung	
	0	Direkt / Arbeitsstromprinzip	
	1	Invers / Ruhestromprinzip	
L (M.C		Meldung Grenzwert 2	
	0		
	1	AKUV	
L / M.J	0	vieldung Grenzwert 3	
	1		
EQ. (dKliv Moldung INP1 Fobler	
1 1 1 1 1 1	0		
	1		<u> </u>
5657		Maldung Systembusfehler: Fehler in der internen Systembus-Kommunikation	
		Dor Ausgang wird gesetzt hei einem Fehler in der internen Systembus-Kommunikation.	
		Systembus-Kommunikation es findet keine Kommunikation mit diesem Gerät statt	
	0	nicht aktiv	
	1	aktiv	<u> </u>
InF.1		Meldung Inf.1-Status. Das Inf.1-Signal wird erzeugt, wenn der Grenzwert für die	
		Betriebsstunden erreicht ist.	
	0	nicht aktiv	
	1	aktiv	
Inf.2		Meldung Inf.2-Status. Das Inf.2-Signal wird erzeugt, wenn der Grenzwert für die	
		Schaltspielzahl erreicht ist.	
	0	nicht aktiv	
	1	aktiv	
Uut.U	-19999999	Skalierung 0% (nur für Out.3 analog) 🛇	
		Untere Skalierungsgrenze des Analogausgangs (entspricht 0%). Werden Strom-	
		oder Spannungssignale als Ausgangsgroßen verwendet, kann in der	
		Die Angebe des Ausgengswertes des unteren Skalierpunktes erfolgt in der	
		lieweiligen elektrischen Größe (mA / V)	
	-19999999	Skalierung 100% (nur für Out.3 analog) 🛇	
2221		Obere Skalierungsgrenze des Analogausgangs (entspricht 100%). Werden	
		Strom- oder Spannungssignale als Ausgangsgrößen verwendet, kann in der	
		Parameter-Ebene eine Skalierung der Anzeige- auf die Ausgangswerte erfolgen.	
		Die Angabe des Ausgangswertes des oberen Skalierpunktes erfolgt in der	
		jeweiligen elektrischen Größe (mA / V).	
U.Sr.c		Signalquelle (nur für Out.3 analog) 😒	
	0	nicht aktiv	<u> </u>
	3	Istwert	<u> </u>
	7	Messwert INP1	
U.F.H.I		Failverhalten 😳	
	0	upscale	
	1	downscale	

Name	Wertebereich	Beschreibung	
d i En		Funktion des digitalen Eingangs	
	0	direkt	
	1	invers	
	2	Tasterfunktion (Einzustellen für 2-Punkt-Bedienung mit Schnittstelle und di1)	
<u> </u>		Local / Remote Umschaltung (Remote: Verstellung von allen Werten über Front ist blockiert)	
	0	keine Funktion (Umschaltung über Schnittstelle ist möglich)	
	1	immer aktiv	
	2	di1 schaltet	
	7	Limit 1 schaltet	
	8	Limit 2 schaltet	
	9	Limit 3 schaltet	
Errs		Quelle des Steuersignals zum Rücksetzen aller gespeicherten Einträge der Errorliste. In der Errorliste stehen sämtliche Fehlermeldungen und Alarme. Steht ein Alarm noch an d. h. ist die Fehlerursache noch nicht beseitigt, können gespeicherte Alarme nicht quittiert und damit rückgesetzt werden. Rücksetzen aller gespeicherten Einträge der Errorliste.	
	2	di1 schaltet	
	6	Reset-Tasten schalten	

Signalzuordnungen LOGI

Verschiedenes othr

Name	Wertebereich	Beschreibung	
bAud		Baudrate der Schnittstelle 😒	
	0	2400 Baud	
	1	4800 Baud	
	2	9600 Baud	
	3	19200 Baud	
	4	38400 Baud	
Addr	1247	Adresse auf der Schnittstelle 😒	
PrŁY		Parität der Daten auf der Schnittstelle 😒	
	0	kein Parität (2 Stoppbits)	
	1	gerade Parität	
	2	ungerade Parität	
	3	kein Parität mit 1 Stoppbit	
del y	0200	Antwortverzögerung [ms] 📀	
5.1 F		Freigabe der Systemschnittstelle 📀	
	0	Die Systemschnittstelle ist deaktiviert.	
	1	Die Systemschnittstelle ist aktiviert (Feldbuskommunikation über Buskoppler).	

Name	Wertebereich	Beschreibung	
ILINE		Anzeigeeinheit (Darstellung auf Display)	
	0	ohne Einheit	
	1	Temperatur-Einheit (siehe Datum Un 1 L)	
	3	%	
	4	bar	
	5	mbar	
	6	Pa	
	7	kPa	
	8	psi	
	9		
	10	1/s	
	11	1/min	
	12	Ohm	
	13	k0hm	
	10	m	
	15	Δ	
	16	mΛ	
	17	V	
	17		
	10		
	19	Ky a	
	20	y	
	21	[Taut dar physikalischen Finheit (definiert in Thluit (verschher über Dhucentrel)	
		Text der physikalischen Einneit (definiert in T.Unit / vorgebbar über BlueControl)	
unic			
	0		
	1		
	2		
	3	Kelvin	
dr.		Dezimalpunkt (max. Nachkommastellen in Anzeige)	
	0	keine Dezimalstelle	
	1	1 Dezimalstelle	
	2	2 Dezimalstellen	
	3	3 Dezimalstellen	
<u>L.dt</u> i	0200	Modem delay [ms]	
FrEq		Umschaltung 50/60 Hz (nur mit BlueControl sichtbar!)	
	0	Netzfrequenz 50 Hz	
	1	Netzfrequenz 60 Hz	
IExo		Blockierung erweiterte Bedienebene (nur mit BlueControl sichtbar!)	
	0	Freigegeben	
	1	Blockiert	
IRES		Das Rücksetzen des LC-Alarms über die Tasten kann zusätzlich über die	
		Passzahl geschützt werden.	
	0	Freigegeben	
	1	Blockiert	
Pass	OFF9999	Passwort (nur mit BlueControl sichtbar!)	
IPar		Blockierung Parameterebene (nur mit BlueControl sichtbar!)	
	0	Freigegeben	
	1	über Passzahl	
ICnf		Blockierung Konfigurationsebene (nur mit BlueControl sichtbar!)	
	0	Freigegeben	
	1	Blockiert	
ICal		Blockierung Kalibrierebene (nur mit BlueControl sichtbar!)	
	0	Freigegeben	
	1	Blockiert	
	0	Freigegeben Blockiert	

Name	Wertebereich	Beschreibung	
Dis1		Auswahl, welcher Wert im Display 1 angezeigt werden soll	
	0	Anzeigewert	
	1	Grenzwert LC	
T.Dis2		Einstellungen für den Text im Display 2 (max. 5 Zeichen)	
		(nur mit BlueControl sichtbar!)	

Linearisierung Lin

Nur über BlueControl® sichtbar!

Name	Wertebereich	Beschreibung	
U.LinT		Temperatur-Einheit der Linearisierungstabelle	
	0	ohne Einheit	
	1	in Celsius	
	2	in Fahrenheit	
	3	in Kelvin	
In.1 In.16	OFF (ab In.3) -19999999	Eingang 1 Eingang 16	
Ou.1 Ou.16	-999.0 9999	Ausgang 1 Ausgang 16	

Bei der Linearisierung von Temperaturwerten wird mit dem Wert U.LinT die Einheit der Vorgabewerte definiert. Es ist möglich, die Werte hier in Celsius vorzugeben, in der Geräteanzeige aber den Messwert in Fahrenheit darzustellen.

- Die Eingangssignale werden je nach Eingangsart in mV, V, mA, % oder Ohm eingetragen.
- Für Sonderthermoelemente (S.tYP = 18) werden die Eingangswerte in V, die Ausgangswerte in der in U.LinT eingestellten Temperatureinheit vorgegeben.
- Für Spezialwiderstandsthermometer (KTY 11-6) (S.tYP = 23) werden die Eingangswerte in Ohm, die Ausgangswerte in der in U.LinT eingestellten Temperatureinheit vorgegeben.

Rücksetzen der Geräte-Konfiguration auf Werkseinstellung (Default)

 \rightarrow Kapitel 1.3, 6.8 (Seite 6)

8 Parameter-Ebene

8.1

Parameter-Übersicht

Abhängig von der Geräteversion und der eingestellten Konfiguration werden nicht benötigte Parameter ausgeblendet.

Das nachfolgende Bild zeigt die über die Front des Gerätes bedienbaren Daten.

- Die Parameter können mit den 🔊 Tasten eingestellt werden.
- Der Übergang zum nächsten Parameter erfolgt durch Drücken der ←- Taste.
- Nach dem letzten Parameter einer Gruppe erscheint $d \circ n E$ in der Anzeige und es erfolgt ein automatischer Übergang zur nächsten Gruppe.

Der Rücksprung an den Anfang einer Gruppe erfolgt durch Drücken der ←- Taste für 3 s.

Erfolgt für 30 s keine Tastenbetätigung, kehrt das Gerät wieder in die Bedienebene zurück. (Timeout = 30 s)

8.2 Parameter

O Die mit diesem Symbol gekennzeichneten Einträge sind nur bei vorhandener Geräte-Option auswählbar.

Bereich rnG

Name	Wertebereich	Beschreibung	
r n <u>6.L</u>	-19999999	untere Grenzwertgrenze für den Hauptalarm LC	
r n <u>6</u> .H	-19999999	obere Grenzwertgrenze für den Hauptalarm LC	

Eingänge InP.1

Name	Wertebereich	Beschreibung	
InL.I	-19999999	Eingangswert des unteren Skalierungspunktes	
		Je nach Sensortyp kann in der Parameter-Ebene eine Skalierung der Eingangs- auf die	
		Anzeigewerte erfolgen. Die Angabe des Eingangswertes des unteren Skalierungspunktes	
		erfolgt in der jeweiligen elektrischen Größe (mA / V / Ohm), z. B. 4 mA.	
	-19999999	Anzeigewert des unteren Skalierungspunktes	
		Je nach Sensortyp kann in der Parameter-Ebene eine Skalierung der Eingangs- auf	
		die Anzeigewerte erfolgen. Der Bediener kann den Anzeigewert des unteren	
		Skalierungspunktes ändern, z. B. 4mA wird angezeigt als 2[pH].	
InH. I	-19999999	Eingangswert des oberen Skalierungspunktes	
		Je nach Sensortyp kann in der Parameter-Ebene eine Skalierung der Eingangs- auf die	
		Anzeigewerte erfolgen. Die Angabe des Eingangswertes des oberen Skalierungspunktes	
		erfolgt in der jeweiligen elektrischen Größe (mÅ / V / Ohm), z. B. 20mA.	
0H. (-19999999	Anzeigewert des oberen Skalierungspunktes	
		Je nach Sensortyp kann in der Parameter-Ebene eine Skalierung der Eingangs- auf	
		die Anzeigewerte erfolgen. Der Bediener kann den Anzeigewert des oberen	
		Skalierungspunktes ändern, z. B. 20mA wird angezeigt als 12 [pH].	
EF (0999,9	Filterzeitkonstante [s]	
		Jeder Eingang verfügt über ein digitales (softwaremäßiges) Tiefpassfilter zur	
		Unterdrückung von anlagebedingten Störungen auf den Eingangsleitungen. Je	
		höher der Wert, desto besser die Filterwirkung, aber desto länger werden die	
		Eingangssignale dadurch verzögert.	
E.E.C. I	OFF, 0100	externe Temperaturkompensation, Bereich abhängig von der Temperatureinheit	

Grenzwerte LC, Lim1 ... Lim 3

Name	Wertebereich	Beschreibung	
	-19999999	Grenzwert LC. Der Grenzwert LC ist die Hauptfunktion des Temperaturbegrenzer/-wächters.	
	-19999999	unterer Grenzwert 1 (L. $\{<$ -1999 \triangleq off)	
		Alarm wird bei Unterschreiten aktiv, wird zurückgesetzt bei unterer Grenzwert plus Hysterese.	
} <u> </u> }	-19999999	oberer Grenzwert 1 (ŀ{ ¦<-1999 ≙ off)	
		Alarm wird bei Überschreiten aktiv, wird zurückgesetzt bei oberer Grenzwert minus Hysterese.	
HY <u>5</u> .1	09999	Hysterese von Grenzwert 1 / LC	
		Schaltdifferenz für oberen und unteren Grenzwert. Um diesen Betrag muss der	
		Wert bei oberem Grenzwert abfallen bzw. bei unterem Grenzwert ansteigen, damit	
		der Grenzwertalarm zurückgesetzt wird.	
L.2	-19999999	unterer Grenzwert 2 (L. \mathcal{L} < -1999 \triangleq off) (s.o.)	
H.2	-19999999	oberer Grenzwert 2 (H, \mathcal{C} < -1999 \triangleq off) (s.o.)	
HY <u>5.2</u>	09999	Hysterese von Grenzwert 2 (s.o.)	
L.3	-19999999	unterer Grenzwert 3 (L. \exists < -1999 \triangleq off) (s.o.)	
H.3	-19999999	oberer Grenzwert 3 (H. \exists < -1999 \triangleq off) (s.o.)	
HY <u>5.3</u>	09999	Hysterese von Grenzwert 3 (s.o.)	

Rücksetzen der Parameter auf Werkseinstellung (Default)

 \rightarrow Kapitel 6.8 (Seite 31)

Kalibrier-Ebene

Im Kalibrier-Menü (EBL) kann eine Anpassung des Messwertes durchgeführt werden.

9

Bitte beachten Sie, dass bei Ausführung der Kalibrier-Funktion eine Verschiebung des Eingangswertes vorgenommen werden kann . Bitte prüfen Sie die Auswirkungen auf den eingestellten Grenzwert.

Die Messwertkorrektur (EBL) ist nur zugänglich, wenn Europhinp / Europhinp / Europhine der 2 gewählt wurde.

Es stehen zwei Methoden zur Verfügung :

- Offset Korrektur
- 2-Punkt Korrektur

Die Werte 1nLx und 1nHx werden mit einer Nachkommastelle dargestellt. Als Referenz für die Korrekturberechnung wird jedoch die volle Auflösung verwendet.

Das Löschen der Korrekturwerte erfolgt am einfachsten durch das Abschalten der Messwertkorrektur $\mathbb{E} \text{ or } r = 0$ oder Setzen der Skalierungsparameter auf einen linearen Verlauf.

Die Werte $\exists nLx und \exists nHx zeigen den aktuell gemessenen Wert an. Die Ausgangswerte <math>\exists uLx und \exists uHx beginnen mit dem vorher eingestellten Wert.$

9.1 Offset-Korrektur

Die Offset-Korrektur verschiebt den Eingangswert um einen vorgegebenen Wert. Parametereinstellung: ($\Box \Box \sigma F / \Box \sigma F / \Box \sigma r r = 1$):

• Sie kann online am Prozess erfolgen.

- Hier wird der tatsächliche Eingangswert des Skalierungspunktes angezeigt.
 Die Korrektur-Funktion wird über die ▲▼ Tasten aktiviert; die Anzeige wechselt von Off auf den Messwert.
 Der Bediener muß warten, bis der Prozess zur Ruhe gekommen ist.
 Danach bestätigt er den Eingangswert mit der ←- Taste.
- □□L:
 Hier wird der Anzeigewert des Skalierungspunktes angezeigt.

 Der Bediener kann mit den ▲▼ Tasten den Anzeigewert korrigieren. Danach bestätigt er den Anzeigewert mit der ←- Taste.

Standardeinstellung

9.2 2-Punkt-Korrektur

Eine 2-Punkt -Korrektur kann die Eingangskurve im Offset und in der Steigung verändern. Parametereinstellung: (ConF/InP/Corr=2):

- Sie ist mit einem Istwertgeber offline durchführbar oder
- online in 2 Schritten: zunächst den einen Wert . korrigieren und später, z.B. nach dem Aufheizen des Ofens, den zweiten Wert korrigieren.

Anzeige

Hier wird der Eingangswert des unteren Skalierungspunktes angezeigt. InL: Die Korrektur-Funktion wird über die 💽 - Tasten aktiviert; die Anzeige wechselt von Off auf den Messwert. Der Bediener muss mit einem Istwertgeber den unteren Eingangswert einstellen. Danach bestätigt er den Eingangswert mit der ← - Taste. Oul: Hier wird der Anzeigewert des unteren Skalierungspunktes angezeigt. Der Bediener kann mit den ATT - Tasten den unteren Anzeigewert korrigieren. Danach bestätigt er den Anzeigewert mit der ← Taste. InH: Hier wird der Eingangswert des oberen Skalierungspunktes angezeigt. Die Korrektur-Funktion wird über die **I** - Tasten aktiviert; die Anzeige wechselt von Off auf den Messwert. Der Bediener muss mit dem Istwertgeber den oberen Eingangswert einstellen. Danach bestätigt er den Eingangswert mit der ← - Taste. ОыН: Hier wird der Anzeigewert des oberen Skalierungspunktes angezeigt. Der Bediener kann mit den 🔊 - Tasten den oberen Anzeigewert korrigieren. Danach bestätigt er den Anzeigewert mit der ← - Taste.

10 **Engineering Tool BlueControl**

Das Engineering Tool BlueControl ist die Projektierungsumgebung für die BluePort® - Gerätefamilien sowie für die rail line - Gerätefamilie von PMA. Folgende Versionen mit abgestufter Funktionalität sind erhältlich:

Funktionalität	Mini	Basic	Expert
Einstellung der Parameter und Konfigurationsparameter	ja	ја	ja
Download: Übertragen eines Engineerings zum Gerät	ja	ја	ја
Online-Modus / Visualisierung	nur SIM	ја	ја
Erstellen einer anwenderspezifischen Linerarisierung	nur SIM	ја	ja
Konfiguration der erweiterten Bedienebene	ja	ја	ја
Upload: Lesen eines Engineerings vom Messumformer	nur SIM	ја	ја
Basisdiagnosefunktion	nein	nein	ја
Datei, Engineering speichern	nein	ја	ја
Druckenfunktion	nein	ја	ја
Onlinedokumentation / Hilfe	ja	ja	ја
Durchführen der Messwertkorrektur	ja	ja	ja
Datenerfassung und Trendaufzeichnung	nur SIM	ja	ja
Netzwerk- / Mehrfachlizenz	nein	nein	ja
Assistentenfunktion	ja	ja	ja
Erweiterte Simulation	nein	nein	ja

Die Mini-Version steht kostenlos zum Download auf der PMA Homepage www.pma-online.de oder auf der PMA-CD (bitte anfordern) zur Verfügung.

Am Ende der Installation muß	BlueControl (Bar Datei Ansicht Gerät	sic) - Gerät1 E <u>x</u> tras Eenster <u>H</u> ilfe ■ ■ ⇔ ☆ ½ ♀	_		_	_	
die mitgelieferte Lizenznummer angegeben oder DEMO-Modus gewählt werden. Im DEMO- Modus kann unter <i>Hilfe</i> \rightarrow <i>Lizenz</i> \rightarrow <i>Ändern</i> die Lizenznummer auch nachträglich eingegeben werden.	Parametrierung - Gerät1 Simulation - Gerät1 Simulatin Simulatin - Gerät1 Simulati						
	- Sonstiges Sonstiges Dinearisieru → Parameter → Funktionen Singang 1 → Grenzwerte	Produkt BlueControl KS 40/50/90 Basic BlueControl KS 40/50/90 Expert BlueControl KS 800/916 Basic BlueControl KS vario Basic BlueControl rail line Basic BlueControl rail line Expert	Bestellnummer 9407 999 11001 9407 999 11011 9407 999 03010 9407 999 03011 KSVC 109 10001 9407 999 9407 999 Butzenz BlueC Geber ein. Lizenz 1234-	Status Status Status Sierung ontrol wird je Sie bitte Ih nummer: 5678-9000 Auswahl vo nur eine ein onalitä zur V nnen die Liz	Löschen etzt für Sie lizensiert, re Lizenznummer n "Demo" steht geschränkte /erfügung, enznummer	OK Hinzufügen Hilfe X OK Abbrechen	

Drücken Sie F1, um Hilfe zu erhalte

Mitgeliefertes Zubehör:

11 Ausführungen

Temperaturbegrenzer T B 4 5 1 Universaleingang, 1 Digitaleingang mit Anzeige und Engineering-Schnittstelle		 Bedienhinweis Hutschienen-Busverbinder bei Option Schnittstelle
ohne Anschlussstecker mit Anschlusssteckerset Schraubklemme 90250V AC, 2 Relais 1830VAC/1831VDC, 2 Relais 90250V AC, mA/V/Logik + 2 Relais 1830VAC/1831VDC, mA/V/Logik+2 Relais	0 1 0 1 2 is 3	
keine Option RS 485 / MODBUS - Protokoll Systemschnittstelle (nur für 24V Ausführunge	0 1 en) 2	
di1 als Kontakteingang di1 als Optokopplereingang Standardkonfiguration Konfiguration nach Angabe	0 1 9	
DIN 3440 / EN 14597	D	

Dokumentationen(Bitte bestellen Sie die zugehörige Dokumentation)Bedienungsanleitung TB 45Deutsch9499-040-93518Bedienungsanleitung TB 45Englisch9499-040-93511Schnittstellenbeschreibung MODBUS rail lineDeutsch9499-040-72018Schnittstellenbeschreibung MODBUS rail lineEnglisch9499-040-72011

Zusatzgeräte	
Beschreibung	Bestell-Nr.
PC-Adapter für die BluePort® Frontschnittstelle	9407-998-00001
BlueControl [®] Mini	www.pma-online.de
BlueControl® - Basic - Lizenz rail line	9407-999-12001
BlueControl® - Expert - Lizenz rail line	9407-999-12011

12

Technische Daten

EINGÄNGE

UNIVERSALEINGANG INP1

Auflösung:	> 14 Bit
Dezimalpunkt:	0 bis 3 Nachkommastellen
dig. Eingangsfilter:	einstellbar 0,0999,9 s
Abtastzyklus:	100 ms
Linearisierung:	15 Segmente, anpassbar mit
	BlueControl®
Messwertkorrektur:	2-Punkt- oder Offsetkorrektur
Тур:	single ended, außer Thermoelemente

Thermoelemente (Tabelle 1)

Eingangswiderstand:	\geq 1 M Ω
Einfluss des Quellenwiderstands:	1μV/ Ω
Messkreisüberwachung:	Bruch, Verpolung

Temperaturkompensation

 intern, 						
- Zusatzfehler:	typ.: max.:	≤± 0,5 K ≤ +1,2 K				
 extern, konstante W 	/ertvorgabe	0100 °C				
Bruchüberwachung						

Strom durch den Fühler:	≤ 1	А
Wirkungsweise konfigurierbar		

Widerstandsthermometer (Tabelle 2)

Anschlusstechnik:	3-Leiter
Leitungswiderstand	max. 30 Ω
Messkreisüberwachung:	Bruch und Kurzschluss

Tabelle 1 Thermoelementmessbereiche

Thermoelementtyp		Messbereich		Genauigkeit	Auflösung (Ø)
L	Fe-CuNi (DIN)	-100900°C	-1481652°F	≤2 K	0,1 K
J	Fe-CuNi	-1001200°C	-1482192°F	≤2 K	0,1 K
K	NiCr-Ni	-1001350°C	-1482462°F	≤2 K	0,2 K
N	Nicrosil/Nisil	-1001300°C	-1482372°F	≤2 K	0,2 K
S	PtRh-Pt 10%	01760°C	323200°F	≤2 K	0,2 K
R	PtRh-Pt 13%	01760°C	323200°F	≤2 K	0,2 K
T**	Cu-CuNi	-200400°C	-328752°F	≤2 K	0,05 K
С	W5%Re-W26%Re	02315°C	324199°F	≤ 3 K	0,4 K
D	W3%Re-W25%Re	02315°C	324199°F	≤ 3 K	0,4 K
E	NiCr-CuNi	-1001000°C	-1481832°F	≤2 K	0,1 K
B*	PtRh-Pt6%	0(100)1820°C	32(212)3308°F	\leq 3 K	0,4 K
Spezial		-25	75 mV	≤0,1 %	0,01 %

* Angaben bei Typ B gelten ab 400°C

** Angaben gelten ab -80°C

Widerstandsmessbereich

in Bereiche unterteilt physikalischer Meßbereich: 0...4500 Ω

Mit der BlueControl Software kann die für den Temperaturfühler KTY 11-6 abgelegte Kennlinie angepasst werden.

Strom und Spannungsmessbereiche (Tabelle 3)

Messanfang, Messende: Skalierung: Messkreisüberwachung: beliebig innerhalb des Messbereichs beliebig, -1999...9999 bei 4..20mA und 2..10V 12,5% unter Messanfang (2mA, 1V)

Tabelle 2 Widerstandsgebermessbereiche

Art	Messstrom	Messbereich		Genauigkeit	Auflösung (∅)
Pt100***		-200100 (150) °C	-328212°F	≤1 K	0,1 K
Pt100		-200850°C	-3281562°F	$\leq 1 \text{ K}$	0,1 K
Pt1000		-200850°C	-3281562°F	≤2 K	0,1 K
KTY 11-6*		-50150°C	-58302°F	≤ 2 K	0,1 K
Spezial	< 0 25 mΔ	04500	Ω^{**}	< 0.1 %	0.01 %
Spezial	0,20 m/ (0450	Ω**	< 0.1 %	0.01 %
Poti		0160	Ω**	< 0.1 %	0.01 %
Poti		0450	Ω**	< 0.1.0/	0,01 %
Poti		01600	Ω^{**}	\geq 0,1 70	0,01 %
Poti		04500 Ω **		≤ 0,1 %	0,01 %

* Voreingestellt ist die Kennlinie KTY 11-6 (-50...150°C)

** inklusiv Leitungswiderstand

*** bis zu 150 °C bei reduziertem Leitungswiderstand (max.160 Ω)

Tabelle 3 Strom- und Spannungsmessbereiche

Messbereich	Eingangswiderstand	Genauigkeit	Auflösung (∅)
020 mA	20 Ω (Spannungsbedarf \leq 2,5 V)	≤ 0,1 %	1,5 µA
010 Volt	$pprox$ 110 k Ω	≤ 0,1 %	0,6 mV
-1010 Volt	$pprox$ 110 k Ω	≤ 0,1 %	1,2 mV
-55Volt	$pprox$ 110 k Ω	≤ 0,1 %	0,6 mV
-2,5115 mV*	$\geq 1M\Omega$	≤ 0,1 %	6 µV
-251150 mV*	$\geq 1M\Omega$	≤ 0,1 %	60 µV
-2590 mV*	$\geq 1M\Omega$	≤ 0,1 %	8 µV
-500500 mV*	$\geq 1M\Omega$	≤ 0,1 %	80 µV
-200200 mV*	$\geq 1M\Omega$	≤ 0,1 %	420 μV

* bei INP1: hochohmige Spannungsbereiche ohne Bruchüberwachung

STEUEREINGANG DI1

Konfigurierbar als direkter oder inverser Schalter oder Taster!

Kontakt - Eingang

Anschluss eines potenzialfreien Kontaktes (Tasters) der zum Schalten "trockener" Stromkreise geeignet ist.

Geschaltete Spannung: 5 V Strom: 1 mA

Optokoppler-Eingang (Option)

Aktiv anzusteuernder Optokopplereingang

Nennspannung:
Logik "0":
Logik "1":
Strombedarf:

24 V DC extern -3 V ... 5 V 15 V... 30 V max. 6 mA

AUSGÄNGE

RELAISAUSGÄNGE LC, OUT2

Kontaktart: Schaltleistung maximal:

Schaltleistung minimal:

Schließer * 500 VA, max. 250 V, max. 2A bei 48...62 Hz, ohmsche Last 6V, 1 mA DC Schaltspiele elektrisch:

für I= 1A/2A: $\geq 800.000 / 500.000$ (bei ~ 250V (ohmsche Last))

* Die Relaisausgänge LC u. OUT2 haben einen gemeinsamen Kontaktanschluss.

Hinweis:

Bei Anschluss eines Steuerschützes an LC bzw. OUT2 ist, um hohe Spannungsspitzen zu vermeiden, eine RC-Schutzbeschaltung nach Angaben des Schützherstellers am Schütz erforderlich.

OUT3 UNIVERSAL-AUSGANG (OPTION)

Paralleler Strom-/Spannungsausgang mit gemeinsamen Minusanschluss (gemeinsam nur in galvanisch getrennten Kreisen einsetzbar).

Frei skalierbar14 BitAuflösung:14 BitGleichlauffehler I/U $\leq 2 \%$ Restwelligkeit (bezogen auf Bereichsende): $\leq \pm 1\%$ 0...130 kHz

Stromausgang

0/4...20 mA, konfigurierbar kurzschlussfest -0,5....23 mA Bürde: \leq 700 Ω Einfluss der Bürde: \leq 0,02%

Spannungsausgang

0/210V konfigurierbar	
nicht dauerhaft kurzschlussfest	
Aussteuerbereich:	-0,1511,5 V
Bürde:	\geq 2 k Ω
Einfluss der Bürde:	$\leq 0,06\%$
Auflösung:	≤0,75 mV
Genauigkeit:	$\leq 0,1\%$
Zusatzfehler bei gleichzeitiger Nutzung des	$\leq 0,09\%$
Stromeingangs:	

OUT3 als Transmitterspeisung

Leistung: $22 \text{ mA} / \ge 13 \text{ V}$

OUT3 als Logiksignal

Bürde \leq 700 Ω : Bürde > 500 [:

GALVANISCHE TRENNUNGEN

 $0/\leq 23 \text{ mA}$

0/> 13 V

Eingänge und Ausgänge sind untereinander und gegen Hilfsenergie galvanisch getrennt.

Prüfspannungen:

Hilfsenergie gegen	2,3 kV AC, 1 min
Ein-/Ausgänge:	
Eingang gegen Ausgang:	500 V AC; 1min

Max. zulässige Spannungen:

zwischen Ein-/Ausgängen gegen \leq 33 V AC Erde:

System RS 485	Eingang INP1
Power	Frontschnittstelle di 1 (Kontakt)
Relais I C	di 1 (Option Optokoppler)
Relais OUT2	Ausgang OUT3

Sicherheitstrennung
 Funktionstrennung

HILFSENERGIE

Je nach Bestellung:

Wechselspannung

Spannung:	90250 V AC
Frequenz:	4862 Hz
Leistungsaufnahme	ca. 9 VA

Allstrom 24 V UC*

Wechselspannung:	1830 V AC
Frequenz:	4862 Hz
Gleichspannung:	1831 V DC
Leistungsaufnahme:	ca. 4 VA / 3W
Speisung nur aus Schutzkleinspannun	a (SELV)

* Geräte mit Option Systemschnittstelle:

Versorgung erfolgt über den Busverbinder vom Feldbuskoppler oder Einspeisemodul

VERHALTEN BEI NETZAUSFALL

Konfiguration, Parameter: Dauerhafte Speicherung im EEPROM.

BluePort[®] FRONTSCHNITTSTELLE

Anschluss an der Gerätefront über PC-Adapter (siehe "Zusatzteile"). Über die BlueControl Software kann das Gerät konfiguriert, parametriert und bedient werden.

BUSSCHNITTSTELLE (OPTION)

RS 485

Anschluss über Busverbinder, in der Hutschiene verlegt. Es sind geschirmte Kabel zu verwenden

Physikalisch: Geschwindigkeit:

Geschwindigkeit:2400, 4800, 9600, 19.200,
38.400 Bit/secParität:gerade, ungerade, keineAdressbereich:1...247Anzahl der Geräte pro Segment:32Darüber hinaus sind Repeater einzusetzen.

RS 485, Kupfer

Protokoll

MODBUS RTU

SYSTEMSCHNITTSTELLE

zum Anschluss an Feldbuskoppler (s. Systemkomponenten) Anschluss über Busverbinder, verlegt in der Hutschiene.

UMGEBUNGSBEDINGUNGEN

Schutzart

Gerätefront:	IP 20
Gehäuse:	IP 20
Anschlüsse:	IP 20

Zulässige Temperaturen

Betrieb:	-1055°C
Anlaufzeit:	≤ 20 Minuten
Temperatureinfluss:	\leq 0,05% / 10 K
zus. Einfluss der Temperaturkomp.:	\leq 0,05% / 10 K
Grenzbetrieb:	-2060°C
Lagerung:	-3070°C

Einbauort

Bis zu 2000 m über Normal Null

Feuchte

max. 95%, 75% im Jahresmittel, keine Betauung

Erschütterung und Stoß

Schwingung Fc (DIN EN 60068-2-6)

Frequenz:	10150 Hz
im Betrieb:	1g bzw. 0,075 mm
außer Betrieb:	2g bzw. 0,15 mm

Schockprüfung Ea (DIN EN 60068-2-27)

Schock:	15g
Dauer:	11ms

Elektromagnetische Verträglichkeit

Erfüllt EN 61326-1 für kontinuierlichen, nicht überwachten Betrieb.

Störaussendung:

• innerhalb der Grenzwerte für Betriebsmittel der Klasse B.

Störfestigkeit:

Die Prüfanforderungen an Betriebsmittel für den Gebrauch in industriellen Bereichen werden erfüllt. Bewertungskriterien:

- Surge-Störungen zeigen z.T. deutliche Einflüsse, die nach Ende der Störbeeinflussung wieder abklingen.
- Bei hohen Surge-Störungen auf Netzleitungen mit 24V AC kann es zu einer Geräterücksetzung kommen.
- Bei HF-Einstrahlungen können Einflüsse bis 50 μV auftreten.

ALLGEMEINES

Gehäuse; Frontteil

Werkstoff:Polyamid PA 6.6Brennbarkeitsklasse:VO (UL 94)

Anschlussstecker

Werkstoff Brennbarkeitsklasse: Polyamid PA V2 (UL 94) für Schraubklemmen V0 (UL 94) für Federzugklemmen, Busverbinder

Sicherheit

CE konform Entspricht EN 61010-1 : Überspannungskategorie II Verschmutzungsgrad 2 Arbeitsspannungsbereich 300 V Schutzklasse II

Zulassungen

Typgeprüft nach DIN EN 14597 (ersetzt DIN3430)

Mit den entsprechenden Fühlern einsetzbar in:

- Wärmeerzeugungsanlagen mit Vorlauftemperaturen bis 120°C nach **DIN 4751**
- Heißwasseranlagen mit Vorlauftemperaturen von mehr als 110°C nach **DIN 4752**
- Wärmeübertragungsanlagen mit organischen Wärmeträgern nach DIN 4754
- Ölfeuerungsanlagen nach DIN 4755

Elektrische Anschlüsse

Anschlussstecker alternativ bestellbar: Schraubklemmen für Leiterquerschnitte von 0,2 bis 2,5mm² Federkraft-Steckerteile für Leiterquerschnitte von 0,2 bis 2,5mm²

Montage Montage auf 35mm Tragschienen nach EN 50022 Verriegelung über Metallfußriegel Dicht an Dicht-Montage möglich

Gebrauchslage:	Senkrecht
Gewicht:	0,18 kg

Mitgeliefertes Zubehör

Bedienhinweis Hutschienen-Busverbinder bei Option Schnittstelle

Index

Index

13

	!		
_	2-Punkt-Korrektur		43
	Α		
-	Anschluss		
	Busschnittstelle		12
	di1		12
	Inp1		11
	Out1, Out2 Out3		1Z 12
_	Anschluss der Klemmen	11 -	12
_	Anschlussbild		11
-	Anschlussplan		13
-	Anschlussstecker		10
	Federzugklemmen		10
_			10
_	Anzeige 1		18
_	Anzeige 2		18
-	Anzeigewert		18
-	Ausführungen		45
	B		
-	Bedienebene		18
-	Bedienstruktur	4.0	17
-	Bedienung	16 -	20
_	BlueControl		27 44
	Π		
	Demontage		q
_	Doppelthermoelement		24
	E		
	Eingangsfohlor - Erkonnung		24
_	Fingangs-Skalierung	23 -	24
_	Einheiten		20
-	Enter-Taste		18
-	Entriegelungsfunktion		19
-	Ersatztelle Erweiterte Bedienebene		0 10
-			10
	F Fabranhait		20
_	Fallen		20 25
_	Frontansicht		16
_	Funktionen	21 -	31
	G		
_	Grenzwerte	26 -	27
_	Grenzwertmelder		22
	I		
_	- Installationshinweise		15
_	Instandsetzung		8
-	Istwert		18
	Κ		
-	Kalibrierung (🕻 🖁 L)		41

- Kelvin Kanfiguriar Ebana (F. a. a. F.)	20
Konfigurier-Ebene (C C C C) Konfigurier-Parameter Parameter-Übersicht	33 - 38 32
L	
- Life-zero	24
- Linearisierung	38
- Logik - Ausgang	29
Μ	
- Messwertausgang	28 - 29
- IVIesswertKorrektur	41
- Montage	9 - 10
0	0.0
Offsot-Korroktur	/12
	42
- Parameter-Ebene (F F F)	/10
Parameter-Übersicht	39
- Pass-Zahl	17
R	
- Reiniauna	8
C	
- Schaltsnielzahl	27
- Sicherheitshinweise	7 - 8
- Signaldatenfluss	21
т	
- TAG - Nr	20
- Technische Daten	46 - 50
- Temperaturbegrenzer	21
- lemperaturwachter	22
- Transmittersneisung	20
	20
Umrüstung	Q
	0
V	17
- Verhalten bei Netz Ein	17
- Vorteile	5
W	0
- Wartung	8
- Wartungsmanager	30
- Werkseinstellung	31
Z	
– - Zubehör	45
- Zusatzgeräte	45
- Zweileiter - Messung	24
 Zweileiter-Messumformer 	29

- Zweileiter-Messumformer