PMA

16

Power Controller Function Module

Solid-state Switching Devices 3RF29..-0KA.

Main Characteristics:		
	Applicable on 3RF21 and 3RF23 devices Autonomous output controller Network/thyristor and load monitoring Partial load fault detection Plug-in control terminals Degree of protection IP 20	
Standards / Approvals:		AT A2 IN/0-12V INC AC
	DIN EN 60947-4-3	RIG-DV TI TO
	UL 508 / CSA	CEEEEE
	CE	
	C-Tick	

Product Description:

Function module for the autonomous output control of complex heating systems, for the operation of loads with temperature-dependent resistances or with long-time ageing resistance and for easy indirect temperature control.

The output controller can be applied on all instantaneous-switching 3RF21 and 3RF23 solid state switching devices. If only the "full-wave control" operating mode is selected, the output controller can also be applied on zero-switching solid state relays and contactors.

Output controller

The output controller continuously adjusts the output in dependence of the taught-in output and the default setpoint value. Fluctuations of the network voltage or the load resistance are not balanced thereby. The autonomous output control is carried out between a range of 0 and 100 % of the taught-in output.

Full-wave control

If the left potentiometer tR is set to 0 sec (= left limit stop), the output controller works in accordance with the full-wave control principle. The set output, whether internal or external, is converted into a pulse-width modulated digital signal. The output controller controls the ON and OFF duration of the solid state switching device within a fixed period duration of 1 second (at 50 Hz), thereby ensuring that the specified output is applied to the load. The ON LED flashes in the same rhythm as the solid state switching devices switches ON and OFF.

Phase-fired control

If the left tR potentiometer is set to a value higher than 0 sec, the module works in accordance with the phase-fired control principle.

With phase-fired control, a reactor with minimally 200 μ H must be applied in the load circuit for compliance with the conducted interference voltage for industrial networks.

Default setpoint value

The default setpoint value is either entered internally via the right P 0 - 100 % potentiometer at the module or externally via the 0 - 10 V analog input.

The taught-in value is the reference value for the default output. Taught-in output = 100 %.

With internal default setpoint value, the module is actuated via the IN terminal. In this context, the 10 V terminal has no function.

Input curve:

With external default setpoint value (P potentiometer at left limit stop), the module is actuated by application of the 0 - 10 V analog voltage. 0 - 10 V correspond to an output of 0 - 100 %. The voltage is converted linearly in a range between 0.1 and 9.9 V. With values below 0.1 V, the switching device remains switched off, voltages above 9.9 V are equaled with an output of 100 %.

Inrush current limiting

Furthermore, with the left tR potentiometer, a ramp time of up to 10 seconds is adjusted for a switch-on voltage ramp for inrush current limiting. The set time refers to an output of 100 %. If, for example, a ramp time of 10 seconds is adjusted and the default output amounts to 60 %, the 60 % output is attained after approx. 6 seconds.

Network, load and thyristor monitoring

The output controller detects load, network and thyristor faults. The faults are signaled by the module's LEDs and the fault output is actuated. The taught-in value is the reference value for the load monitoring. Up to 6 partial loads can be monitored. The response delay in case of a fault is about 100 ms at full-wave control. At phase-fired control and setpoint values > 50% the response delay is 500 ms from the end of the ramp time.

The detection of partial load faults takes place only in a output range from 20 up to 100%. *The detection of partial load faults during phase-fired control:*

The detection of partial load faults during full-wave control :

An intelligent voltage compensation guarantees during network voltage fluctuations, that changes of the load currents won't cause a fault report – irrespective of the output value.

During the operating mode Phase-fired control and Phase-angle $< 90^{\circ}$ therefore every 3 seconds the output-value is raised to a phase-angle of 90° for about 4 half-waves, in order to determine the correct voltage level for charged circuit. Therewith the response time to partial load faults increases to 3 seconds. With the circular increase of the output value the characteristic curve setpoint to output is no more linear.

Ordering Key:						
<u>3RF29</u>	<u>20</u>	- <u>0</u>	<u>K</u>	A	<u>1</u>	<u>3</u>
Function module for 3RF21 and 3RF23	Max. load current 20 = 20 A 50 = 50 A 90 = 90 A	Connection technology 0 = Not relevant	Switching function K = Output controller	Controlled phases A = Single-phase	Control voltage 1 = 24 V AC/DC 3 = 110 V AC	Operating voltage 3 = 110 230 V 6 = 400 600 V

Not all possible versions are available ex stock.

Main Circuit:				
Туре		3RF29 20 -0KA.	3RF29 50 -0KA.	3RF29 90 -0KA.
Current detection				
Rated operating current Ie	А	20	50	90
TEACH range	A	0,65 20	1,6 50	2,9 90
 Measuring range 	А	0 22	0 55	0 99
Min. partial load current	А	0,65	1,6	2,9
Number of partial loads		1 6		

Туре		3RF290KA. 3	3RF290KA. 6		
Rated operating voltage U_e	V	110 230	400 600		
Tolerance	%	-15/+10			
Rated frequency	Hz	50/60 ± 2			
Rated insulation voltage U _i		600			
Voltage detection					
Measuring / TEACH range	V	93,5 253	340 660		
Compensation Network voltage fluctuation		20 (only within the measuring range)			

Partial load monitoring response-threshold in dependence on the sum current

E.g. 3RF2920-0KA..

The characteristic curve shows the required load change (y-axis) for the identification of a partial load fault depending on the teach-current (x-axis) at an output value of 100%. With an accordingly lower output value the response-threshold decreases as well, but cannot fall under the minimum value of 0,65 A.

Control Circuit A1-A2:						
Туре		3RF290KA 1 .		3RF290KA 3 .		
Rated control supply voltage U_s	V	AC/DC 24		AC 110 V		
Current input	mA	< 40		< 20		
Max. control supply voltage	V	AC 26,5	DC 30	121		
Min. control supply voltage	V	AC 20,5	DC 18	90		

Control Input IN:				
Туре		3RF290KA1.		3RF290KA 3 .
Rated operating voltage U_c	V	AC/DC 24		AC 110
With operating current	mA	< 15		< 15
Max. operating voltage	V	AC 26,5	DC 30	121
Response voltage	V	AC 14	DC 15	79
With pickup current	mA	> 2	> 2	> 2
Drop-out voltage	V	5	5	15
Rated frequency of the control supply voltage	Hz	50/60 ± 10 %		50/60 ± 10 %

Control Input 0-10 V:

	3RF290KA.
V	0 10
V	-1 11
kOhm	8
s	1
s	0,83
	V

Auxiliary Circuit 11-12:						
Туре		3RF290KA 1 .	3RF290KA 3 .			
Switching voltage	V	AC/DC 24	AC 110			
Operating current (utilization category)	A	0,5 (DC-12)	0,5 (AC-12)			
Max. switching voltage	V	30	121			
Min. switching voltage	V	15	90			
Max. thermal current I _{th}	А	1	1			

General Data:		
Ambient temperature		
During operation	°C	-25 60
During storage	°C	-55 80
Mounting altitude	m	0 1000; at > 1000 m, please contact our Technical Assistance
Impact resistance acc. to DIN IEC 68	g/ms	15/11
Vibration resistance	g	2
Degree of protection		IP20
Electromagnetic compatibility (EMC)		
Interference emission		
 Conducted interference voltage IEC 60 947-4-3 		Class A for industrial applications ¹
 Radiated, high-frequency interference voltage IEC 60 947-4-3 		Class A for industrial applications
Interference resistance		
 Electrostatic discharge acc. to IEC 61 000-4-2 (corresponds to severity 3) 	kV	Contact discharge 4; air discharge 8; performance criterion 2
o Induced HF fields acc. to IEC 61 000-4-6	MHz	0.15 80; 140 dBµV; performance criterion 1
 Burst acc. to IEC 61 000-4-4 	kV	2/5.0 kHz; performance criterion 1
 Surge acc. to IEC 61 000-4-5 	kV	Phase-to-ground 2; phase-to-phase 1; performance criterion 2
Isolation resistance	MOhm	1,5 (between Main- and Control circuit)

¹ With phase-fired control, a reactor with min. 200 μ H must be applied in the load circuit in order to comply with the limit values for conducted interference voltages in industrial networks. **Attention!**

This product was constructed as an EMC Class A device. The use of this product in residential applications could lead to radio interferences. In such an application, additional filtering may be required.

Туре		Screw connection
Connection, auxiliary/control contacts		
Conductor cross-section	mm² mm² AWG	1 x (0.5 2.5) 2 x (0.5 1.0) 20 12
Stripping length	mm	7
Terminal screw		М 3
 Tightening torque 	Nm lb.in	0.5 0.6 4.5 5.3
Current transformer hole diameter	mm	17

Allocation to the Solid	State Switching De	evices:		
Applicable for	Order No.		Control voltage	Terminals
Solid state relays	3RF211BA0.	3RF213BAO.	Us = DC 24 V	Screw and ring cable
-	3RF211BA1.	3RF21 3 BA 1 .	Us = AC/DC 24 V	connection
	3RF211BA2.	3RF213BA2.	Us = AC 110230 V	
	3RF211BA4.	3RF213BA4.	Us = DC 430 V	
Solid state contactors	3RF231BA0.	3RF233BAO.	Us = DC 24 V	Screw and ring cable
	3RF231BA1.	3RF23 3 BA 1 .	Us = AC/DC 24 V	connection
	3RF231BA2.	3RF233BA2.	Us = AC 110230 V	
	3RF231BA4.	3RF233BA4.	Us = DC 430 V	
Accessories	Order No.			
Sealable caps	3RF2900-0RA88			

With full-wave control, the operation of the output controller is also permissible on zero-switching solid state switching devices.

SIDAC Reactors for the Phase-Fired Control Operating Mode:							
Туре	3RF29 20 -0KA.	3RF29 50 -0KA.	3RF29 90 -0KA.				
Rated voltage							
Up to 230 V	4EM4700-8CB00	4EM5001-1CB00	4EM6100-5CB00				
Up to 480 V	4EM4915-0CB00	4EM6100-6CB00	4EM5316-7CB00				
Up to 660 V	4EM5007-7CB00	4EM6204-0CB00	4EM5412-0CB00				

Mounting:

The module can be mounted onto all solid state switching devices listed above. After disconnection of the control terminal from the solid state switching device and disconnection of the line to the load from the 2T terminal, the output controller can be snapped on. All connections to the basic device are realized thereby. Caution: The guide at the transformer must be inserted into the groove of the solid state switching device! The control terminal of the solid state relay or contactor is plugged into the function module's A2-A2 terminal. The line to the load must be routed through the transformer (D 17.0 mm) and reconnected to the solid state switching device.

For dismounting, the two clips fixed to the top of the output controller must be lifted by means of a small screwdriver. The module must then be manually withdrawn from the basic device in vertical direction.

Commissioning:

When the supply voltage (terminal A1-A2) is first applied, the two THYRISTOR and SUPPLY LEDs flash alternately as no TEACH process has yet been carried out. The fault signal output is not set thereby. The function module can be taught in the controlled or uncontrolled state.

Press the TEACH button for at least 3 seconds. After this time, the load monitoring detects the current flowing through the solid state relay or contactor and stores it as a setpoint value². If an inrush current limit has been set at the module, the output controller independently passes through the voltage ramp and only detects the reference output at the end of the set time. The position of the P potentiometer has no influence on the TEACH process. The correct completion of the TEACH process is indicated by a simultaneous continuous illumination of the three right LEDs.

The TEACH process can be repeated at any time.

² Attention: If the supply voltage **and** the frequency to the module changes the TEACH process must be carried out once again!

The output controller cannot be operated without a TEACH process. With the supply voltage applied, the TEACH button can be pressed shortly, maximum for one second, for test purposes. For this time, the solid state switching device switches through and you can thereby test the arrangement.

Function Diagram:

Example Circuit Diagram:

- A1 Control (PLC)
- F1, 2 Miniature circuit-breaker main circuit
- K1 3RF23 solid state contactor with plugged-on output controller module
- R1 Load resistance
- L1 / 6) Reactor 200µH for phase-fired control operation for compliance with limit values for conducted interference voltage acc. to class A
- 1) Internal connection to the solid state relay / contactor
- 2) Straight-through transformer
- Voltage detection not galvanic separated (3 MOhm each path)
- 4) Connection contact L/N with
 Load monitoring 3RF29...0KA.3 at the neutral conductor N (e.g. 230 V)
 Load monitoring 3RF29...0KA.6 at a second phase (e.g. 400 V)
 - Use of a second m.c.b. recommended
- 5) Earthing of L- recommended
- 7) Earthing according local standards

PMA Prozeß- und Maschinen- Automation GmbH P.O. Box 31 02 29 D-34058 Kassel Tel.: +49 - 561- 505 1307 Fax: +49 - 561- 505 1710 E-mail: mailbox@pma-online.de Internet: http://www.pma-online.de

Your local representative: